MESOSCALE MATERIAL STRENGTH CHARACTERIZATION FOR USE IN FRACTURE MODELING

被引:0
|
作者
Acton, Katherine [1 ]
Bahmani, Bahador [2 ]
Abedi, Reza [2 ]
机构
[1] Univ St Thomas, Mech Engn, St Paul, MN 55105 USA
[2] Univ Tennessee Knoxville, Mech Aerosp & Biomed Engn, Space Inst UTSI, Tullahoma, TN 37388 USA
来源
PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2018, VOL 9 | 2019年
基金
美国国家科学基金会;
关键词
SIZE; COMPOSITES;
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
To accurately simulate fracture, it is necessary to account for small-scale randomness in the properties of a material. Apparent properties of Statistical Volume Elements (SVE), can be characterized below the scale of a Representative Volume Element (RVE). Apparent properties cannot be defined uniquely for an SVE, in the manner that unique effective properties can be defined for an RVE. Both constitutive behavior and material strength properties in SVE must be statistically characterized. The geometrical partitioning method can be critically important in affecting the probability distributions of mesoscale material property parameters. Here, a Voronoi tessellation based partitioning scheme is applied to generate SVE. Resulting material property distributions are compared with those from SVE generated by square partitioning. The proportional limit stress of the SVE is used to approximate SVE strength. Superposition of elastic results is used to obtain failure strength distributions from boundary conditions at variable angles of loading.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Controlling and testing the fracture strength of silicon on the mesoscale
    Chen, KS
    Ayon, A
    Spearing, SM
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2000, 83 (06) : 1476 - 1484
  • [2] Material Characterization and Modeling of High strength PM Steel
    Mirajkar, Sachin B.
    Gopinath, K.
    Prakash, Raghu V.
    MATERIALS PROCESSING TECHNOLOGY, 2011, 337 : 766 - +
  • [3] Predicting material strength, damage, and fracture: The synergy between experiment and modeling
    Gray III G.T.
    Maudlin P.J.
    Hull L.M.
    Zuo Q.K.
    Chen S.-R.
    Journal of Failure Analysis and Prevention, 2005, 5 (3) : 7 - 17
  • [4] Modeling the effect of mesoscale randomness on concrete fracture
    Tregger, Nathan
    Corr, David
    Graham-Brady, Lori
    Shah, Surendra
    PROBABILISTIC ENGINEERING MECHANICS, 2006, 21 (03) : 217 - 225
  • [5] Mesoscale modeling of dynamic fracture of ceramic materials
    Maiti, S
    Geubelle, PH
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2004, 5 (02): : 91 - 101
  • [6] Mesoscale modeling of dynamic fracture of ceramic materials
    Maiti, Spandan
    Geubelle, Philippe H.
    CMES - Computer Modeling in Engineering and Sciences, 2004, 5 (02): : 91 - 101
  • [7] An overview of mesoscale material modeling with Eulerian hydrocodes
    Olney, K.
    Benson, D. J.
    Nesterenko, V.
    18TH APS-SCCM AND 24TH AIRAPT, PTS 1-19, 2014, 500
  • [8] Computational analysis of deformation and fracture in a composite material on the mesoscale level
    Balokhonov, R. R.
    Romanova, V. A.
    Schmauder, S.
    COMPUTATIONAL MATERIALS SCIENCE, 2006, 37 (1-2) : 110 - 118
  • [9] Modeling of porous material fracture
    Levandovskiy A.N.
    Melnikov B.E.
    Shamkin A.A.
    2017, St-Petersburg State Polytechnical University (69): : 3 - 22
  • [10] Mesoscale material modeling with memoryless isotropic point particles
    Strand, Erik
    Tourlomousis, Filippos
    Gershenfeld, Neil
    JOURNAL OF COMPUTATIONAL SCIENCE, 2024, 75