Analogies between optical and quantum mechanical angular momentum

被引:12
作者
Nienhuis, Gerard [1 ]
机构
[1] Leiden Univ, Huygens Kamerlingh Onnes Lab, POB 9504, NL-2300 RA Leiden, Netherlands
来源
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2017年 / 375卷 / 2087期
关键词
optical modes; angular momentum; operators in optics; FREE ELECTROMAGNETIC-FIELD; LINEARLY POLARIZED-LIGHT; PARAXIAL WAVE OPTICS; SUBWAVELENGTH GRATINGS; AXIAL SYMMETRY; LASER-BEAMS; PATTERNS; MODES;
D O I
10.1098/rsta.2015.0443
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The insight that a beam of light can carry orbital angular momentum (AM) in its propagation direction came up in 1992 as a surprise. Nevertheless, the existence of momentum and AM of an electromagnetic field has been well known since the days of Maxwell. We compare the expressions for densities of AM in general three-dimensional modes and in paraxial modes. Despite their classical nature, these expressions have a suggestive quantum mechanical appearance, in terms of linear operators acting on mode functions. In addition, paraxial wave optics has several analogies with real quantum mechanics, both with the wave function of a free quantum particle and with a quantum harmonic oscillator. We discuss how these analogies can be applied. This article is part of the themed issue 'Optical orbital angular momentum'.
引用
收藏
页数:16
相关论文
共 41 条
[1]   BEAM TRANSFORMATIONS AND NONTRANSFORMED BEAMS [J].
ABRAMOCHKIN, E ;
VOLOSTNIKOV, V .
OPTICS COMMUNICATIONS, 1991, 83 (1-2) :123-135
[2]   Generalized Gaussian beams [J].
Abramochkin, EG ;
Volostnikov, VG .
JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS, 2004, 6 (05) :S157-S161
[3]  
Afanasiev GN, 1996, NUOVO CIMENTO A, V109, P271, DOI 10.1007/BF02731014
[4]   ORBITAL ANGULAR-MOMENTUM OF LIGHT AND THE TRANSFORMATION OF LAGUERRE-GAUSSIAN LASER MODES [J].
ALLEN, L ;
BEIJERSBERGEN, MW ;
SPREEUW, RJC ;
WOERDMAN, JP .
PHYSICAL REVIEW A, 1992, 45 (11) :8185-8189
[5]  
[Anonymous], 1915, MATH ANAL ELECT OPTI
[6]   GAUSSIAN LIGHT BEAMS WITH GENERAL ASTIGMATISM [J].
ARNAUD, JA ;
KOGELNIK, H .
APPLIED OPTICS, 1969, 8 (08) :1687-&
[7]   On the natures of the spin and orbital parts of optical angular momentum [J].
Barnett, Stephen M. ;
Allen, L. ;
Cameron, Robert P. ;
Gilson, Claire R. ;
Padgett, Miles J. ;
Speirits, Fiona C. ;
Yao, Alison M. .
JOURNAL OF OPTICS, 2016, 18 (06)
[8]   Duplex symmetry and its relation to the conservation of optical helicity [J].
Barnett, Stephen M. ;
Cameron, Robert P. ;
Yao, Alison M. .
PHYSICAL REVIEW A, 2012, 86 (01)
[9]   Rotation of electromagnetic fields and the nature of optical angular momentum [J].
Barnett, Stephen M. .
JOURNAL OF MODERN OPTICS, 2010, 57 (14-15) :1339-1343
[10]   Full Poincare beams [J].
Beckley, Amber M. ;
Brown, Thomas G. ;
Alonso, Miguel A. .
OPTICS EXPRESS, 2010, 18 (10) :10777-10785