Microstructure and mechanical response of single-crystalline high-manganese austenitic steels under high-pressure torsion: The effect of stacking-fault energy

被引:38
作者
Astafurova, E. G. [1 ]
Tukeeva, M. S. [1 ]
Maier, G. G. [1 ]
Melnikov, E. V. [1 ]
Maier, R. I. [2 ]
机构
[1] Russian Acad Sci, Inst Strength Phys & Mat Sci, Lab Phys Mat Sci, Siberian Branch, Tomsk 634021, Russia
[2] Leibniz Univ Hannover, Inst Werkstoffkunde Mat Sci, D-30823 Hannover, Germany
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2014年 / 604卷
关键词
Austenite; Steel; Twinning; High-pressure torsion; Microstructure; Stacking-fault energy; INDUCED PLASTICITY; STAINLESS-STEEL; HADFIELD STEEL; DEFORMATION; BEHAVIOR; TRANSFORMATIONS; TEMPERATURE; STABILITY; ALUMINUM;
D O I
10.1016/j.msea.2014.03.029
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We investigate the kinetics of the structural deformation and hardening of single-crystalline austenitic Fe-13Mn-1.3C (Hadfield steel), Fe-13Mn-2.7Al-1.3C, and Fe-28Mn-2.7Al-13C (in wt%) steels with different stacking-fault energies after cold high-pressure torsion. Independently of the stacking-fault energy, mechanical twinning was found to be the basic deformation mechanism responsible for the rapid generation of an ultrafine-grained microstructure with a high volume fraction of twin boundaries. Under high-pressure torsion, the spacing between twin boundaries increases, and the dislocation density and microhardness decrease as the stacking-fault energy increases. The formation of a twin net from the beginning of plastic flow in Fe-13Mn-1.3C steel provides a homogeneous distribution of microhardness values across the discs independent of strain under torsion. Lower hardness values in the disk centers compared to the periphery were observed for the two other steels, Fe-13Mn-2.7Al-1.3C and Fe-28Mn-2.7AI-1.3C, with higher stacking-fault energies due to changes in the densities of the twin boundaries. An additional increase in the dislocation density for the Fe-13Mn-1.3C steel was detected compared with the Fe-13Mn-2.7Al-1.3C and Fe-28Mn-2.7Al-1.3C steels, which was a result of torsion in the temperature range of dynamic strain aging. The appearance of small fractions of e and alpha' phases in the structures of the Fe-13Mn-1.3C, Fe-13Mn-2.7Al-1.3C, and Fe-28Mn-2.7Al-1.3C steels is discussed. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:166 / 175
页数:10
相关论文
共 36 条
[1]   STRAIN-HARDENING OF HADFIELD MANGANESE STEEL [J].
ADLER, PH ;
OLSON, GB ;
OWEN, WS .
METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1986, 17 (10) :1725-1737
[2]   The role of twinning on microstructure and mechanical response of severely deformed single crystals of high-manganese austenitic steel [J].
Astafurova, E. G. ;
Tukeeva, M. S. ;
Zakharova, G. G. ;
Melnikov, E. V. ;
Maier, H. J. .
MATERIALS CHARACTERIZATION, 2011, 62 (06) :588-592
[3]   Structural and phase transformations in nanostructured 0.1% C-Mn-V-Ti steel during cold deformation by high pressure torsion and subsequent heating [J].
Astafurova E.G. ;
Dobatkin S.V. ;
Naydenkin E.V. ;
Shagalina S.V. ;
Zakharova G.G. ;
Ivanov Yu.F. .
Nanotechnologies in Russia, 2009, 4 (1-2) :109-120
[4]   The influence of orientation and aluminium content on the deformation mechanisms of Hadfield steel single crystals [J].
Astafurova, Elena G. ;
Kireeva, Irina V. ;
Chumlyakov, Yuriy I. ;
Maier, Hans J. ;
Sehitoglu, Huseyin .
INTERNATIONAL JOURNAL OF MATERIALS RESEARCH, 2007, 98 (02) :144-149
[5]   Influence of stacking-fault energy on microstructural characteristics of ultrafine-grain copper and copper-zinc alloys [J].
Balogh, Levente ;
Ungar, Tamas ;
Zhao, Yonghao ;
Zhu, Y. T. ;
Horita, Zenji ;
Xu, Cheng ;
Langdon, Terence G. .
ACTA MATERIALIA, 2008, 56 (04) :809-820
[6]   On the negative strain rate sensitivity of Hadfield steel [J].
Canadinc, D. ;
Efstathiou, C. ;
Sehitoglu, H. .
SCRIPTA MATERIALIA, 2008, 59 (10) :1103-1106
[7]   Three-dimensional shear-strain patterns induced by high-pressure torsion and their impact on hardness evolution [J].
Cao, Y. ;
Wang, Y. B. ;
Figueiredo, R. B. ;
Chang, L. ;
Liao, X. Z. ;
Kawasaki, M. ;
Zheng, W. L. ;
Ringer, S. P. ;
Langdon, T. G. ;
Zhu, Y. T. .
ACTA MATERIALIA, 2011, 59 (10) :3903-3914
[8]   DEFORMATION TWINNING [J].
CHRISTIAN, JW ;
MAHAJAN, S .
PROGRESS IN MATERIALS SCIENCE, 1995, 39 (1-2) :1-157
[9]   MECHANISM OF WORK-HARDENING IN HADFIELD MANGANESE STEEL [J].
DASTUR, YN ;
LESLIE, WC .
METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1981, 12 (05) :749-759
[10]   Thermal stability of ultrafine-grained austenitic stainless steels [J].
Etienne, A. ;
Radiguet, B. ;
Genevois, C. ;
Le Breton, J. -M. ;
Valiev, R. ;
Pareige, P. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2010, 527 (21-22) :5805-5810