Weyl-Titchmarsh M-function asymptotics, local uniqueness results, trace formulas, and Borg-type theorems for Dirac operators

被引:103
作者
Clark, S [1 ]
Gesztesy, F
机构
[1] Univ Missouri, Dept Math & Stat, Rolla, MO 65409 USA
[2] Univ Missouri, Dept Math, Columbia, MO 65211 USA
关键词
Weyl-Titchmarsh matrices; high-energy expansions; uniqueness results; trace formulas; Borg theorems; Dirac operators;
D O I
10.1090/S0002-9947-02-03025-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We explicitly determine the high-energy asymptotics for Weyl-Titchmarsh matrices associated with general Dirac-type operators on half-lines and on R. We also prove new local uniqueness results for Dirac-type operators in terms of exponentially small differences of Weyl-Titchmarsh matrices. As concrete applications of the asymptotic high-energy expansion we derive a trace formula for Dirac operators and use it to prove a Borg-type theorem.
引用
收藏
页码:3475 / 3534
页数:60
相关论文
共 121 条
[1]   INVERSE SPECTRAL THEORY FOR THE AKNS SYSTEM WITH SEPARATED BOUNDARY-CONDITIONS [J].
AMOUR, L .
INVERSE PROBLEMS, 1993, 9 (05) :507-523
[2]   Isospectral sets for AKNS systems on the unit interval with generalized periodic boundary conditions [J].
Amour, L ;
Guillot, JC .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1996, 6 (01) :1-27
[3]  
[Anonymous], FIELDS I COMMUN
[4]  
[Anonymous], 1991, SOLITON EQUATIONS HA
[5]  
[Anonymous], SIB MATH J
[6]  
[Anonymous], STURMLIOUVILLE DIRAC
[7]  
Aronszajn N., 1956, J ANAL MATH, V5, P321, DOI DOI 10.1007/BF02937349
[8]   J-inner matrix functions, interpolation and inverse problems for canonical systems, III: More on the inverse monodromy problem [J].
Arov, DZ ;
Dym, H .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2000, 36 (02) :127-181
[9]   J-inner matrix functions, interpolation and inverse problems for canonical systems, I: Foundations [J].
Arov, DZ ;
Dym, H .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1997, 29 (04) :373-454
[10]   J-inner matrix functions, interpolation and inverse problems for canonical systems, II: The inverse monodromy problem [J].
Arov, DZ ;
Dym, H .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2000, 36 (01) :11-70