A Differential Lyapunov Framework for Contraction Analysis

被引:221
作者
Forni, Fulvio [1 ]
Sepulchre, Rodolphe [1 ,2 ]
机构
[1] Univ Liege, Dept Elect Engn & Comp Sci, B-4000 Liege, Belgium
[2] Univ Cambridge, Dept Engn, Cambridge CB2 1PZ, England
关键词
Contraction; incremental stability; linearization; Lyapunov methods; nonlinear systems; STABILIZATION; PASSIVITY; SYSTEMS; STABILITY; CONSENSUS;
D O I
10.1109/TAC.2013.2285771
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Lyapunov's second theorem is an essential tool for stability analysis of differential equations. The paper provides an analog theorem for incremental stability analysis by lifting the Lyapunov function to the tangent bundle. The Lyapunov function endows the state-space with a Finsler structure. Incremental stability is inferred from infinitesimal contraction of the Finsler metrics through integration along solutions curves.
引用
收藏
页码:614 / 628
页数:15
相关论文
共 57 条
  • [1] Absil PA, 2008, OPTIMIZATION ALGORITHMS ON MATRIX MANIFOLDS, P1
  • [2] An intrinsic observer for a class of Lagrangian systems
    Aghannan, N
    Rouchon, P
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2003, 48 (06) : 936 - 945
  • [3] Monotone control systems
    Angeli, D
    Sontag, ED
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2003, 48 (10) : 1684 - 1698
  • [4] A Lyapunov approach to incremental stability properties
    Angeli, D
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2002, 47 (03) : 410 - 421
  • [5] Further Results on Incremental Input-to-State Stability
    Angeli, David
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2009, 54 (06) : 1386 - 1391
  • [6] [Anonymous], 2013, PROC 9 IFAC S NONLIN
  • [7] [Anonymous], 1992, RIEMANNIAN GEOMETRY
  • [8] [Anonymous], 2008, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems
  • [9] Bao D., 2000, An Introduction to Riemann-Finsler Geometry
  • [10] Boothby W.M., 2003, Pure and Applied Mathematics