Hamiltonicity in vertex envelopes of plane cubic graphs

被引:2
作者
Fleischner, Herbert [2 ]
Hobbs, Arthur M. [1 ]
Muzhevec, Michael Tapfuma [3 ]
机构
[1] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[2] Vienna Univ Technol, Inst Informat Syst, Dept Data Bases & Artificial Intelligence, Vienna, Austria
[3] Univ Zimbabwe, Dept Math, Harare, Zimbabwe
关键词
Hamiltonian; Plane graph; Cubic graph; Prism; Leapfrog;
D O I
10.1016/j.disc.2008.06.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study a graph operation which produces what we call the "vertex envelope" G*(v) from a graph G. We apply it to plane cubic graphs and investigate the hamiltonicity of the resulting graphs, which are also cubic. To this end, we prove a result giving a necessary and sufficient condition for the existence of hamiltonian cycles in the vertex envelopes of plane cubic graphs. We then use these conditions to identify graphs or classes of graphs whose vertex envelopes are either all hamiltonian or all non-hamiltonian, paying special attention to bipartite graphs. We also show that deciding if a vertex envelope is hamiltonian is NP-complete, and we provide a polynomial algorithm for deciding if a given cubic plane graph is a vertex envelope. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:4793 / 4809
页数:17
相关论文
共 20 条
  • [1] ARCHDEACON D, HDB GRAPH THEORY, P723
  • [2] Barnette D. W., 1969, RECENT PROGR COMBINA, V3, P343
  • [3] Bondy J. A., 1976, Graduate Texts in Mathematics, V290
  • [4] METHOD IN GRAPH THEORY
    BONDY, JA
    CHVATAL, V
    [J]. DISCRETE MATHEMATICS, 1976, 15 (02) : 111 - 135
  • [5] ALTERNATING HAMILTONIAN CYCLES IN 2 COLORED COMPLETE BIPARTITE GRAPHS
    CHETWYND, AG
    HILTON, AJW
    [J]. JOURNAL OF GRAPH THEORY, 1992, 16 (02) : 153 - 158
  • [6] Dirac G.A., 1952, Proc. Lond. Math. Soc., V2, P69, DOI [10.1112/plms/s3-2.1.69, DOI 10.1112/PLMS/S3-2.1.69]
  • [7] Fleischner H., 1974, Journal of Combinatorial Theory, Series B, V16, P29, DOI 10.1016/0095-8956(74)90091-4
  • [8] Fleischner H., 1974, Journal of Combinatorial Theory, Series B, V16, P17, DOI 10.1016/0095-8956(74)90090-2
  • [9] HAMILTONIAN TOTAL GRAPHS
    FLEISCHNER, H
    HOBBS, AM
    [J]. MATHEMATISCHE NACHRICHTEN, 1975, 68 : 59 - 82
  • [10] Fleischner H., 1990, Eulerian Graphs and Related Topics Part 1, V1