Fe2TiO5 nanochains as anode for high-performance lithium-ion capacitor

被引:48
作者
Kang, Rong [1 ]
Zhu, Wang-Qin [1 ]
Li, Sheng [1 ]
Zou, Bo-Bo [1 ]
Wang, Liao-Liao [1 ]
Li, Guo-Chun [1 ]
Liu, Xian-Hu [2 ]
Ng, Dickon H. L. [3 ]
Qiu, Jing-Xia [1 ]
Zhao, Yan [1 ]
Qiao, Fen [1 ]
Lian, Jia-Biao [1 ]
机构
[1] Jiangsu Univ, Inst Energy Res, Key Lab Zhenjiang, Zhenjiang 212013, Jiangsu, Peoples R China
[2] Zhengzhou Univ, Minist Educ, Key Lab Mat Proc & Mold, Zhengzhou 450002, Peoples R China
[3] Chinese Univ Hong Kong, Dept Phys, Hong Kong 999077, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Lithium-ion capacitors; High energy; power densities; Anode material; Fe2TiO5; nanochains; Electrospinning; ENERGY-STORAGE; ROOM-TEMPERATURE; CARBON; HYBRID; NANOMATERIALS; SUPERCAPACITOR; NANOPARTICLES; CONVERSION; NANOSHEETS; BEHAVIOR;
D O I
10.1007/s12598-020-01638-4
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The unique crystal structure and multiple redox couples of iron titanate (Fe2TiO5) provide it a high theoretical capacity and good cycling stability when used as an electrode. In this study, the electrospinning method is employed to synthesize one-dimensional (1D) Fe2TiO5 nanochains. The as-prepared Fe2TiO5 nanochains exhibited superior specific capacity (500 mAh center dot g(-1) at 0.10 A center dot g(-1)), excellent rate performance (180 mAh center dot g(-1) at 5.00 A center dot g(-1)), and good cycling stability (retaining 100% of the initial specific capacity at a current density of 1.00 A center dot g(-1) after 1000 cycles). The as-assembled Fe2TiO5/SCCB lithium-ion capacitor (LIC) also delivered a competitive energy density (137.8 Wh center dot kg(-1)) and power density (11,250 W center dot kg(-1)). This study proves that the as-fabricated 1D Fe2TiO5 nanochains are promising anode materials for high-performance LICs.
引用
收藏
页码:2424 / 2431
页数:8
相关论文
共 53 条
[1]   An asymmetric hybrid nonaqueous energy storage cell [J].
Amatucci, GG ;
Badway, F ;
Du Pasquier, A ;
Zheng, T .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (08) :A930-A939
[2]   Improving anode performances of lithium-ion capacitors employing carbon-Si composites [J].
An, Ya-Bin ;
Chen, Si ;
Zou, Min-Min ;
Geng, Lin-Bin ;
Sun, Xian-Zhong ;
Zhang, Xiong ;
Wang, Kai ;
Ma, Yan-Wei .
RARE METALS, 2019, 38 (12) :1113-1123
[3]   High power lithium-ion hybrid electrochemical capacitors using spinel LiCrTiO4 as insertion electrode [J].
Aravindan, V. ;
Chuiling, W. ;
Madhavi, S. .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (31) :16026-16031
[4]   Unveiling TiNb2O7 as an Insertion Anode for Lithium Ion Capacitors with High Energy and Power Density [J].
Aravindan, Vanchiappan ;
Sundaramurthy, Jayaraman ;
Jain, Akshay ;
Kumar, Palaniswamy Suresh ;
Ling, Wong Chui ;
Ramakrishna, Seeram ;
Srinivasan, Madapusi P. ;
Madhavi, Srinivasan .
CHEMSUSCHEM, 2014, 7 (07) :1858-1863
[5]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[6]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[7]   Pseudocapacitive oxide materials for high-rate electrochemical energy storage [J].
Augustyn, Veronica ;
Simon, Patrice ;
Dunn, Bruce .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (05) :1597-1614
[8]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946
[9]   Quinone/ester-based oxygen functional group-incorporated full carbon Li-ion capacitor for enhanced performance [J].
Cai, Peng ;
Zou, Kangyu ;
Zou, Guoqiang ;
Hou, Hongshuai ;
Ji, Xiaobo .
NANOSCALE, 2020, 12 (06) :3677-3685
[10]   Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance [J].
Chao, Dongliang ;
Zhu, Changrong ;
Yang, Peihua ;
Xia, Xinhui ;
Liu, Jilei ;
Wang, Jin ;
Fan, Xiaofeng ;
Savilov, Serguei V. ;
Lin, Jianyi ;
Fan, Hong Jin ;
Shen, Ze Xiang .
NATURE COMMUNICATIONS, 2016, 7