Asymptotic behavior for elliptic problems with singular coefficient and nearly critical Sobolev growth

被引:21
作者
Cao, Daomin [1 ]
Peng, Shuangjie
机构
[1] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
[2] Chinese Acad Sci, AMSS, Inst Appl Math, Beijing 100080, Peoples R China
关键词
asymptotic behavior; singularity; critical Sobolev; Hardy exponents;
D O I
10.1007/s10231-005-0150-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let B-R subset of R-N (N >= 3) be a ball centered at the origin with radius R. We investigate the asymptotic behavior of positive solutions for the Dirichlet problem -Delta U = mu u/vertical bar x vertical bar(2) + u(2*-1-epsilon), u > 0 in B-R, u = 0 on partial derivative B-R when epsilon -> 0(+) for suitable positive numbers mu.
引用
收藏
页码:189 / 205
页数:17
相关论文
共 22 条
[1]   NODAL SOLUTIONS OF ELLIPTIC-EQUATIONS WITH CRITICAL SOBOLEV EXPONENTS [J].
ATKINSON, FV ;
BREZIS, H ;
PELETIER, LA .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1990, 85 (01) :151-170
[2]   ELLIPTIC-EQUATIONS WITH NEARLY CRITICAL GROWTH [J].
ATKINSON, FV ;
PELETIER, LA .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1987, 70 (03) :349-365
[3]  
Azorero JPG, 1998, J DIFFER EQUATIONS, V144, P441
[4]   A Sobolev-Hardy inequality with applications to a nonlinear elliptic equation arising in astrophysics [J].
Badiale, M ;
Tarantello, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2002, 163 (04) :259-293
[5]  
BREZIS H, 1989, PARTIAL DIFFERENTIAL
[6]   A global compactness result for singular elliptic problems involving critical Sobolev exponent [J].
Cao, DM ;
Peng, SJ .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (06) :1857-1866
[7]  
Catrina F., 2000, COMMUN PUR APPL MATH, V53, P1, DOI [10.1002/(SICI)1097-0312(200001)53:13.0.CO
[8]  
2-U, DOI 10.1002/(SICI)1097-0312(200001)53:13.0.CO
[9]  
2-U]
[10]  
CHEN X, 2001, DIFFER INTEGRAL EQU, V14, P1367