Photothermal Conversion of CO2 into CH4 with H2 over Group VIII Nanocatalysts: An Alternative Approach for Solar Fuel Production

被引:468
作者
Meng, Xianguang [1 ,2 ,3 ]
Wang, Tao [1 ,2 ]
Liu, Lequan [1 ,2 ]
Ouyang, Shuxin [1 ,2 ,4 ]
Li, Peng [1 ,2 ]
Hu, Huilin [4 ]
Kako, Tetsuya [1 ,2 ,3 ]
Iwai, Hideo [5 ]
Tanaka, Akihiro [5 ]
Ye, Jinhua [1 ,2 ,3 ,4 ]
机构
[1] Environm Remediat Mat Unit, Tsukuba, Ibaraki 3050044, Japan
[2] Int Ctr Mat Nanoarchitecton WPI MANA, Tsukuba, Ibaraki 3050044, Japan
[3] Hokkaido Univ, Grad Sch Chem Sci & Engn, Sapporo, Hokkaido 0600814, Japan
[4] Tianjin Univ, TU NIMS Joint Res Ctr, Sch Mat Sci & Engn, Tianjin 300072, Peoples R China
[5] Natl Inst Mat Sci, Mat Anal Stn, Tsukuba, Ibaraki 3050047, Japan
关键词
carbon dioxide; hydrogenation; photothermal effects; solar fuels; transition metals; PHOTOCATALYTIC REDUCTION; LIGHT; WATER; NANOPARTICLES; HYDROGEN; NANOSTRUCTURES; DISSOCIATION; CATALYSTS; DIOXIDE; ENERGY;
D O I
10.1002/anie.201404953
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The photothermal conversion of CO2 provides a straightforward and effective method for the highly efficient production of solar fuels with high solar-light utilization efficiency. This is due to several crucial features of the GroupVIII nanocatalysts, including effective energy utilization over the whole range of the solar spectrum, excellent photothermal performance, and unique activation abilities. Photothermal CO2 reaction rates (molh(-1)g(-1)) that are several orders of magnitude larger than those obtained with photocatalytic methods (molh(-1)g(-1)) were thus achieved. It is proposed that the overall water-based CO2 conversion process can be achieved by combining light-driven H-2 production from water and photothermal CO2 conversion with H-2. More generally, this work suggests that traditional catalysts that are characterized by intense photoabsorption will find new applications in photo-induced green-chemistry processes.
引用
收藏
页码:11478 / 11482
页数:5
相关论文
共 57 条
[1]   CO2 Dissociation and Upgrading from Two-Step Solar Thermochemical Processes Based on ZnO/Zn and SnO2/SnO Redox Pairs [J].
Abanades, Stephane ;
Chambon, Marc .
ENERGY & FUELS, 2010, 24 (12) :6667-6674
[2]   CO2 methanation property of Ru nanoparticle-loaded TiO2 prepared by a polygonal barrel-sputtering method [J].
Abe, Takayuki ;
Tanizawa, Masaaki ;
Watanabe, Kuniaki ;
Taguchi, Akira .
ENERGY & ENVIRONMENTAL SCIENCE, 2009, 2 (03) :315-321
[3]   Photocatalytic conversion of carbon dioxide into methanol using optimized layered double hydroxide catalysts [J].
Ahmed, Naveed ;
Morikawa, Motoharu ;
Izumi, Yasuo .
CATALYSIS TODAY, 2012, 185 (01) :263-269
[4]  
[Anonymous], 2010, ANGEW CHEM, DOI DOI 10.1002/ANGE.201003110
[5]  
[Anonymous], 2006, ANGEW CHEM INT EDIT, DOI DOI 10.1002/ANGE.200602473
[6]   Carbon capture and storage update [J].
Boot-Handford, M. E. ;
Abanades, J. C. ;
Anthony, E. J. ;
Blunt, M. J. ;
Brandani, S. ;
Mac Dowell, N. ;
Fernandez, J. R. ;
Ferrari, M. -C. ;
Gross, R. ;
Hallett, J. P. ;
Haszeldine, R. S. ;
Heptonstall, P. ;
Lyngfelt, A. ;
Makuch, Z. ;
Mangano, E. ;
Porter, R. T. J. ;
Pourkashanian, M. ;
Rochelle, G. T. ;
Shah, N. ;
Yao, J. G. ;
Fennell, P. S. .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (01) :130-189
[7]   MoS2/Graphene Cocatalyst for Efficient Photocatalytic H2 Evolution under Visible Light Irradiation [J].
Chang, Kun ;
Mei, Zongwei ;
Wang, Tao ;
Kang, Qing ;
Ouyang, Shuxin ;
Ye, Jinhua .
ACS NANO, 2014, 8 (07) :7078-7087
[8]  
Chen X., 2008, ANGEW CHEM, V120, P5433, DOI [DOI 10.1002/ANGE.200800602, 10.1002/ange.200800602]
[9]   Visible-light-driven oxidation of organic contaminants in air with gold nanoparticle catalysts on oxide supports [J].
Chen, Xi ;
Zhu, Huai-Yong ;
Zhao, Jin-Cai ;
Zheng, Zhan-Feng ;
Gao, Xue-Ping .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (29) :5353-5356
[10]   Opportunities and challenges for a sustainable energy future [J].
Chu, Steven ;
Majumdar, Arun .
NATURE, 2012, 488 (7411) :294-303