Transportation cost-information inequalities and applications to random dynamical systems and diffusions

被引:172
作者
Djellout, H [1 ]
Guillin, A
Wu, L
机构
[1] Univ Clermont Ferrand, CNRS, UMR 6620, Lab Math Apll, F-63177 Aubiere, France
[2] Univ Paris 09, CEREMADE, CNRS, UMR 7534, F-75775 Paris, France
[3] Wuhan Univ, Dept Math, Wuhan 430072, Peoples R China
关键词
Diffusions; Girsanov's transformation; Random dynamical systems; Transportation cost-information inequalities;
D O I
10.1214/009117904000000531
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We first give a characterization of the L-1-transportation cost-information inequality on a metric space and next find some appropriate sufficient condition to transportation cost-information inequalities for dependent sequences. Applications to random dynamical systems and diffusions are studied.
引用
收藏
页码:2702 / 2732
页数:31
相关论文
共 22 条
[11]   A measure concentration inequality for contracting Markov chains [J].
Marton, K .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1996, 6 (03) :556-571
[12]   Measure concentration for a class of random processes [J].
Marton, K .
PROBABILITY THEORY AND RELATED FIELDS, 1998, 110 (03) :427-439
[13]  
MASSART P, 2003, SAINT FLOUR SUMMER S
[14]  
McDiarmid Colin, 1989, Surveys in combinatorics, 1989 (Norwich, 1989), V141, P148, DOI [DOI 10.1017/CBO9781107359949.008, 10.1017/CBO9781107359949.008]
[15]   Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality [J].
Otto, F ;
Villani, C .
JOURNAL OF FUNCTIONAL ANALYSIS, 2000, 173 (02) :361-400
[16]   Hoeffding inequalities for Lipschitz functions of dependent sequences [J].
Rio, E .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (10) :905-908
[17]  
Samson PM, 2000, ANN PROBAB, V28, P416
[18]   Transportation cost for Gaussian and other product measures [J].
Talagrand, M .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1996, 6 (03) :587-600
[19]  
Villani C., 2003, TOPICS OPTIMAL TRANS
[20]   Transportation cost inequalities on path spaces over Riemannian manifolds [J].
Wang, FY .
ILLINOIS JOURNAL OF MATHEMATICS, 2002, 46 (04) :1197-1206