Transportation cost-information inequalities and applications to random dynamical systems and diffusions

被引:172
作者
Djellout, H [1 ]
Guillin, A
Wu, L
机构
[1] Univ Clermont Ferrand, CNRS, UMR 6620, Lab Math Apll, F-63177 Aubiere, France
[2] Univ Paris 09, CEREMADE, CNRS, UMR 7534, F-75775 Paris, France
[3] Wuhan Univ, Dept Math, Wuhan 430072, Peoples R China
关键词
Diffusions; Girsanov's transformation; Random dynamical systems; Transportation cost-information inequalities;
D O I
10.1214/009117904000000531
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We first give a characterization of the L-1-transportation cost-information inequality on a metric space and next find some appropriate sufficient condition to transportation cost-information inequalities for dependent sequences. Applications to random dynamical systems and diffusions are studied.
引用
收藏
页码:2702 / 2732
页数:31
相关论文
共 22 条
[1]   Hypercontractivity of Hamilton-Jacobi equations [J].
Bobkov, SG ;
Gentil, I ;
Ledoux, M .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2001, 80 (07) :669-696
[2]   Exponential integrability and transportation cost related to logarithmic sobolev inequalities [J].
Bobkov, SG ;
Götze, F .
JOURNAL OF FUNCTIONAL ANALYSIS, 1999, 163 (01) :1-28
[3]   MARTINGALE REPRESENTATION AND A SIMPLE PROOF OF LOGARITHMIC SOBOLEV INEQUALITIES ON PATH SPACES [J].
Capitaine, Mireille ;
Hsu, Elton P. ;
Ledoux, Michel .
ELECTRONIC COMMUNICATIONS IN PROBABILITY, 1997, 2 :71-81
[4]  
Dembo A, 1997, ANN PROBAB, V25, P927
[5]   Measure transport on Wiener space and the Girsanov theorem [J].
Feyel, D ;
Üstünel, AS .
COMPTES RENDUS MATHEMATIQUE, 2002, 334 (11) :1025-1028
[6]  
FEYEL D, 2004, IN PRESS PROBAB THEO
[7]  
GENTIL I, 2001, THESIS U P SABATIER
[8]  
LEDOUX M, 2002, CONCENTRATION TRANSP
[9]  
Ledoux M., 2001, CONCENTRATION MEASUR
[10]  
Marton K, 1996, ANN PROBAB, V24, P857