Roles of Superchirality and Interference in Chiral Plasmonic Biodetection

被引:36
作者
Gilroy, Cameron [1 ]
Hashiyada, Shun [2 ,3 ,5 ]
Endo, Kensaku [4 ]
Karimullah, Affar S. [1 ]
Barron, Laurence D. [1 ]
Okamoto, Hiromi [2 ,3 ]
Togawa, Yoshihiko [4 ]
Kadodwala, Malcolm [1 ]
机构
[1] Univ Glasgow, Sch Chem, Joseph Black Bldg, Glasgow G12 8QQ, Lanark, Scotland
[2] Inst Mol Sci, 38 Nishigonaka, Okazaki, Aichi 4448585, Japan
[3] Grad Univ Adv Studies Sokendai, 38 Nishigonaka, Okazaki, Aichi 4448585, Japan
[4] Osaka Prefecture Univ, Dept Phys & Elect, Sakai, Osaka 5998570, Japan
[5] RIKEN, Ctr Adv Photon, Innovat Photon Manipulat Res Team, Wako, Saitama 3510198, Japan
基金
英国工程与自然科学研究理事会;
关键词
BIOMOLECULES;
D O I
10.1021/acs.jpcc.9b02791
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Chiral plasmonic nanostructures enable <= pg detection and characterization of biomaterials. The sensing capabilities are associated with the chiral asymmetry of the near fields, which locally can be greater than equivalent circularly polarized light, a property referred to as superchirality. However, sensing abilities do not simply scale with the magnitude of superchirality. We show that chiral molecular sensing is correlated to the thickness of a nanostructure. This observation is reconciled with a previously unconsidered interference mechanism for the sensing phenomenon. It involves the "dissipation" of optical chirality into chiral material currents through the interference of fields generated by two spatially separated chiral modes. The presence of a chiral dielectric causes an asymmetric change in the phase difference, resulting in asymmetric changes to chiroptical properties. Thus, designing a chiral plasmonic sensor requires engineering a substrate that can sustain both superchiral fields and an interference effect.
引用
收藏
页码:15195 / 15203
页数:9
相关论文
共 23 条
[1]   Induced Chirality through Electromagnetic Coupling between Chiral Molecular Layers and Plasmonic Nanostructures [J].
Abdulrahman, Nadia A. ;
Fan, Z. ;
Tonooka, Taishi ;
Kelly, Sharon M. ;
Gadegaard, Nikolaj ;
Hendry, Euan ;
Govorov, Alexander O. ;
Kadodwala, Malcolm .
NANO LETTERS, 2012, 12 (02) :977-983
[2]  
Barron L. D., 2004, Molecular Light Scattering and Optical Activity
[3]   Characterizing optical chirality [J].
Bliokh, Konstantin Y. ;
Nori, Franco .
PHYSICAL REVIEW A, 2011, 83 (02)
[4]   Optical Chirality in Dispersive and Lossy Media [J].
Enrique Vazquez-Lozano, J. ;
Martinez, Alejandro .
PHYSICAL REVIEW LETTERS, 2018, 121 (04)
[5]   Enantiomer-Selective Molecular Sensing Using Racemic Nanoplasmonic Arrays [J].
Garcia-Guirado, Jose ;
Svedendahl, Mikael ;
Puigdollers, Joaquim ;
Quidantt, Romain .
NANO LETTERS, 2018, 18 (10) :6279-6285
[6]   Theory of Chiral Plasmonic Nanostructures Comprising Metal Nanocrystals and Chiral Molecular Media [J].
Govorov, Alexander O. ;
Fan, Zhiyuan .
CHEMPHYSCHEM, 2012, 13 (10) :2551-2560
[7]   Chiral Electromagnetic Fields Generated by Arrays of Nanoslits [J].
Hendry, E. ;
Mikhaylovskiy, R. V. ;
Barron, L. D. ;
Kadodwala, M. ;
Davis, T. J. .
NANO LETTERS, 2012, 12 (07) :3640-3644
[8]  
Hendry E, 2010, NAT NANOTECHNOL, V5, P783, DOI [10.1038/nnano.2010.209, 10.1038/NNANO.2010.209]
[9]   Chiral Plasmonic Fields Probe Structural Order of Biointerfaces [J].
Kelly, Christopher ;
Tullius, Ryan ;
Lapthorn, Adrian J. ;
Gadegaard, Nikolaj ;
Cooke, Graeme ;
Barron, Laurence D. ;
Karimullah, Affar S. ;
Rotello, Vincent M. ;
Kadodwala, Malcolm .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (27) :8509-8517
[10]   Controlling Metamaterial Transparency with Superchiral Fields [J].
Kelly, Christopher ;
Khorashad, Larousse Khosravi ;
Gadegaard, Nikolaj ;
Barron, Laurence D. ;
Govorov, Alexander O. ;
Karimullah, Affar S. ;
Kadodwala, Malcolm .
ACS PHOTONICS, 2018, 5 (02) :535-543