Bayesian Tracking of Video Graphs Using Joint Kalman Smoothing and Registration

被引:1
作者
Bal, Aditi Basu [1 ]
Mounir, Ramy [2 ]
Aakur, Sathyanarayanan [3 ]
Sarkar, Sudeep [2 ]
Srivastava, Anuj [1 ]
机构
[1] Florida State Univ, Tallahassee, FL 32306 USA
[2] Univ S Florida, Tampa, FL 33620 USA
[3] Oklahoma State Univ, Stillwater, OK 74078 USA
来源
COMPUTER VISION - ECCV 2022, PT XXXV | 2022年 / 13695卷
基金
美国国家科学基金会;
关键词
Motion tracking; Graph-representations; Video graphs; Quotient metrics; Kalman smoothing; Nonlinear manifolds; NETWORKS;
D O I
10.1007/978-3-031-19833-5_26
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Graph-based representations are becoming increasingly popular for representing and analyzing video data, especially in object tracking and scene understanding applications. Accordingly, an essential tool in this approach is to generate statistical inferences for graphical time series associated with videos. This paper develops a Kalman-smoothing method for estimating graphs from noisy, cluttered, and incomplete data. The main challenge here is to find and preserve the registration of nodes (salient detected objects) across time frames when the data has noise and clutter due to false and missing nodes. First, we introduce a quotient-space representation of graphs that incorporates temporal registration of nodes, and we use that metric structure to impose a dynamical model on graph evolution. Then, we derive a Kalman smoother, adapted to the quotient space geometry, to estimate dense, smooth trajectories of graphs. We demonstrate this framework using simulated data and actual video graphs extracted from the Multiview Extended Video with Activities (MEVA) dataset. This framework successfully estimates graphs despite the noise, clutter, and missed detections.
引用
收藏
页码:440 / 456
页数:17
相关论文
共 51 条
[1]   Going Deeper with Semantics: Video Activity Interpretation using Semantic Contextualization [J].
Aakur, Sathyanarayanan ;
de Souza, Fillipe D. M. ;
Sarkar, Sudeep .
2019 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2019, :190-199
[2]   GENERATING OPEN WORLD DESCRIPTIONS OF VIDEO USING COMMON SENSE KNOWLEDGE IN A PATTERN THEORY FRAMEWORK [J].
Aakur, Sathyanarayanan N. ;
De Souza, Fillipe D. M. ;
Sarkar, Sudeep .
QUARTERLY OF APPLIED MATHEMATICS, 2019, 77 (02) :323-356
[3]  
Adeli V, 2021, Arxiv, DOI arXiv:2104.04029
[4]  
[Anonymous], 2004, Kalman filtering and neural networks
[5]  
Bras¢ G, 2020, Arxiv, DOI arXiv:1912.07515
[6]   Geometric Deep Learning Going beyond Euclidean data [J].
Bronstein, Michael M. ;
Bruna, Joan ;
LeCun, Yann ;
Szlam, Arthur ;
Vandergheynst, Pierre .
IEEE SIGNAL PROCESSING MAGAZINE, 2017, 34 (04) :18-42
[7]  
Calissano A, 2020, POPULATIONS UNLABELE
[8]  
Cao DF, 2020, ADV NEUR IN, V33
[9]   Recurrent Neural Networks for Multivariate Time Series with Missing Values [J].
Che, Zhengping ;
Purushotham, Sanjay ;
Cho, Kyunghyun ;
Sontag, David ;
Liu, Yan .
SCIENTIFIC REPORTS, 2018, 8
[10]  
Chen F., 2020, 28 INT C ADV GEOGRAP