B, N-doped carbon nanosheets embedded with Co nanoparticles for enhanced oxygen reduction reaction

被引:2
|
作者
Sun, Xiaohan [1 ]
Tie, Xiaoguo [1 ]
Zhang, Yurui [1 ]
Zhao, Zhengwei [1 ]
Li, Qiaoxia [1 ,2 ]
Min, Yulin [1 ,2 ]
Xu, Qunjie [1 ,2 ]
机构
[1] Shanghai Univ Elect Power, Coll Environm & Chem Engn, Shanghai Key Lab Mat Protect & Adv Mat Elect Powe, 2588 Changyang Rd, Shanghai 200090, Peoples R China
[2] Shanghai Inst Pollut Control & Ecol Secur, Shanghai 200090, Peoples R China
基金
美国国家科学基金会;
关键词
Co nanoparticles; Hierarchical porous structure; Oxygen reduction reaction; B-C bond; Electronic structure; Nanostructured catalysts; ACTIVE-SITES; POROUS CARBON; NITROGEN; ELECTROCATALYST; EVOLUTION; CATALYSTS; BORON; NANOTUBES; DEFECT; IRON;
D O I
10.1007/s11051-022-05409-3
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Co-based materials with optimized adsorption energy of reaction intermediates have become the promising electrocatalyst for enhanced oxygen reduction reaction (ORR). Here, B, N-doped carbon nanosheets embedded with Co nanoparticles are reported by a simple wet chemical method and further pyrolysis process. The average size of Co nanoparticles is 10.03 +/- 1.6 nm. X-ray photoelectron spectroscopy and electrochemical measurements show that those doped with B enrich active sites of the catalyst with highly active B-C bond and provide greater electrochemical surface area for ORR. The material shows impressive ORR performance with a positive half-wave potential of 0.87 V and a superior limiting current density of 6.88 mA cm(-2) outperforming commercial Pt/C in alkaline solution. Noticeably, the optimized electron structure of Co-N species significantly weakens the Co-O bond and adsorption energy of OOH*, which could promote the occurrence of close to the four-electron ORR process. This work, besides showing electrocatalysts with excellent ORR performance, provided an approach for optimizing catalytic activity of Co-based materials.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] B, N-doped carbon nanosheets embedded with Co nanoparticles for enhanced oxygen reduction reaction
    Xiaohan Sun
    Xiaoguo Tie
    Yurui Zhang
    Zhengwei Zhao
    Qiaoxia Li
    Yulin Min
    Qunjie Xu
    Journal of Nanoparticle Research, 2022, 24
  • [2] Cu Nanoparticles Embedded in N-Doped Carbon Materials for Oxygen Reduction Reaction
    Wen, Xudong
    Qi, Hui
    Cheng, Yan
    Zhang, Qiaoqiao
    Hou, Changmin
    Guan, Jingqi
    CHINESE JOURNAL OF CHEMISTRY, 2020, 38 (09) : 941 - 946
  • [3] N-doped porous carbon nanosheets with embedded iron carbide nanoparticles for oxygen reduction reaction in acidic media
    Liu, You-Lin
    Xu, Xue-Yan
    Sun, Ping-Chuan
    Chen, Tie-Hong
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (13) : 4531 - 4539
  • [4] Heterostructured Cu/CuO Nanoparticles Embedded within N-Doped Carbon Nanosheets for Efficient Oxygen Reduction Reaction
    Xu, Guoting
    Huang, Jianfeng
    Li, Xiaoyi
    Chen, Qian
    Xie, Yajie
    Liu, Zhenting
    Kajiyoshi, Koji
    Wu, Lingling
    Cao, Liyun
    Feng, Liangliang
    CATALYSTS, 2023, 13 (02)
  • [5] Co2N nanoparticles embedded N-doped mesoporous carbon as efficient electrocatalysts for oxygen reduction reaction
    Guo, Dakai
    Tian, Zhengfang
    Wang, Jiacheng
    Ke, Xuebin
    Zhu, Yufang
    APPLIED SURFACE SCIENCE, 2019, 473 (555-563) : 555 - 563
  • [6] Co nanoparticles embedded N-doped hierarchical porous carbon matrix as an efficient electrocatalyst for oxygen reduction reaction
    Liu, Xiaoming
    Zhang, Wendi
    Liu, Xuan-He
    Li, Kuangjun
    Zhang, Xing
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2022, 906
  • [7] Co Nanoparticles Encapsulated in N-Doped Carbon Nanotubes Grafted CNTs as Electrocatalysts for Enhanced Oxygen Reduction Reaction
    Wang, Chao
    Ha, Yuan
    Mao, Xin
    Xu, Weilan
    Du, Aijun
    Wu, Renbing
    Chou, Shulei
    Zhang, Haijiao
    ADVANCED MATERIALS INTERFACES, 2022, 9 (05):
  • [8] A Facile Method to Prepare Ultrafine Pd Nanoparticles Embedded into N-Doped Porous Carbon Nanosheets as Highly Efficient Electrocatalysts for Oxygen Reduction Reaction
    Zhang, Shenzhi
    Wang, Likai
    Fang, Liping
    Tian, Yali
    Tang, Yi
    Niu, Xueliang
    Hao, Yupeng
    Li, Zhongfang
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (05)
  • [9] Folic Acid Coordinated Cu-Co Site N-Doped Carbon Nanosheets for Oxygen Reduction Reaction
    Xie, Shengnan
    Li, Linke
    Chen, Yi
    Fan, Jinchen
    Li, Qiaoxia
    Min, Yulin
    Xu, Qunjie
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (03) : 3949 - 3958
  • [10] Carbon coated SiO nanoparticles embedded in hierarchical porous N-doped carbon nanosheets for enhanced lithium storage
    Zhang, Qianliang
    Xi, Baojuan
    Xiong, Shenglin
    Qian, Yitai
    INORGANIC CHEMISTRY FRONTIERS, 2021, 8 (18) : 4282 - 4290