State filtering and parameter estimation for state space systems with scarce measurements

被引:120
作者
Ding, Feng [1 ,2 ]
机构
[1] Jiangnan Univ, Key Lab Adv Proc Control Light Ind, Minist Educ, Wuxi 214122, Peoples R China
[2] Jiangnan Univ, Control Sci & Engn Res Ctr, Wuxi 214122, Peoples R China
基金
中国国家自然科学基金;
关键词
Signal processing; State filtering; Parameter estimation; Recursive identification; Missing data; LEAST-SQUARES ALGORITHM; HIERARCHICAL IDENTIFICATION; RECURSIVE-IDENTIFICATION; HAMMERSTEIN SYSTEMS; OUTPUT PREDICTION; DATA OPERATION; KALMAN FILTER; CONVERGENCE; MODELS;
D O I
10.1016/j.sigpro.2014.03.031
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper considers the state filtering and parameter estimation problems for state space systems with scarce output availability. When the scarce states are available, a least squares based algorithm and an observer based parameter estimation algorithm are developed to estimate the system parameter matrices and states. For the case with unknown states, a combined parameter estimation and state filtering algorithm is presented for canonical state space models, using the reconstructed states for the parameter estimation. Finally, an example is provided to test the effectiveness of the proposed algorithms. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:369 / 380
页数:12
相关论文
共 49 条
[1]   Output prediction under scarce data operation: control applications [J].
Albertos, P ;
Sanchis, R ;
Sala, A .
AUTOMATICA, 1999, 35 (10) :1671-1681
[2]  
[Anonymous], 1999, SYSTEM IDENTIFICATIO
[3]   Efficient adaptive identification of linear-in-the-parameters nonlinear filters using periodic input sequences [J].
Carini, Alberto ;
Sicuranza, Giovanni L. ;
Mathews, V. John .
SIGNAL PROCESSING, 2013, 93 (05) :1210-1220
[4]   Hierarchical identification of lifted state-space models for general dual-rate systems [J].
Ding, F ;
Chen, TW .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2005, 52 (06) :1179-1187
[5]  
Ding F., 2014, INF SCI
[6]   Hierarchical gradient based and hierarchical least squares based iterative parameter identification for CARARMA systems [J].
Ding, Feng ;
Liu, Ximei ;
Chen, Huibo ;
Yao, Guoyu .
SIGNAL PROCESSING, 2014, 97 :31-39
[7]   Combined state and least squares parameter estimation algorithms for dynamic systems [J].
Ding, Feng .
APPLIED MATHEMATICAL MODELLING, 2014, 38 (01) :403-412
[8]   Gradient-based and least-squares-based iterative algorithms for Hammerstein systems using the hierarchical identification principle [J].
Ding, Feng ;
Liu, Xinggao ;
Chu, Jian .
IET CONTROL THEORY AND APPLICATIONS, 2013, 7 (02) :176-184
[9]   Coupled-least-squares identification for multivariable systems [J].
Ding, Feng .
IET CONTROL THEORY AND APPLICATIONS, 2013, 7 (01) :68-79
[10]   Decomposition based fast least squares algorithm for output error systems [J].
Ding, Feng .
SIGNAL PROCESSING, 2013, 93 (05) :1235-1242