Multispectral Foreground Detection via Robust Cross-Modal Low-Rank Decomposition

被引:1
作者
Zheng, Aihua [1 ]
Zhao, Yumiao [1 ]
Li, Chenglong [1 ]
Tang, Jin [1 ]
Luo, Bin [1 ]
机构
[1] Anhui Univ, Sch Comp Sci & Technol, Hefei 230601, Anhui, Peoples R China
来源
ADVANCES IN MULTIMEDIA INFORMATION PROCESSING, PT I | 2018年 / 11164卷
基金
中国国家自然科学基金;
关键词
Cross-modality consistency; Foreground detection; Low-rank decomposition; BACKGROUND-SUBTRACTION; VIDEO; SURVEILLANCE; FUSION; COLOR;
D O I
10.1007/978-3-030-00776-8_75
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose a novel approach which pursues cross-modal low-rank decomposition for robust multi-spectral foreground detection. For each spectrum, we employ the idea of low-rank and sparse decomposition to detect sparse moving objects against background with low-rank structure for its robustness to noises. Unlike simply combining multi-modal detecting results or compulsively enforcing a shared foreground mask in existing methods, we propose to pursue the cross modality consistency among heterogeneous modalities by introducing a soft cross-modality consistent constraint to the multi-modal low-rank decomposition model. Extensive experiments on the benchmark dataset GTFD suggest that our approach achieves superior performance over the state-of-the-art algorithms.
引用
收藏
页码:819 / 829
页数:11
相关论文
共 32 条
  • [1] [Anonymous], [No title captured]
  • [2] [Anonymous], MARKOV RANDOM FIELD
  • [3] [Anonymous], 2018, FOREGROUND SEGMENTAT
  • [4] ViBe: A Universal Background Subtraction Algorithm for Video Sequences
    Barnich, Olivier
    Van Droogenbroeck, Marc
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2011, 20 (06) : 1709 - 1724
  • [5] Fast approximate energy minimization via graph cuts
    Boykov, Y
    Veksler, O
    Zabih, R
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2001, 23 (11) : 1222 - 1239
  • [6] Robust Principal Component Analysis?
    Candes, Emmanuel J.
    Li, Xiaodong
    Ma, Yi
    Wright, John
    [J]. JOURNAL OF THE ACM, 2011, 58 (03)
  • [7] Chen Y., 2017, IEEE T CIRCUITS SYST, V1
  • [8] Abnormal behavior detection using hybrid agents in crowded scenes
    Cho, Sang-Hyun
    Kang, Hang-Bong
    [J]. PATTERN RECOGNITION LETTERS, 2014, 44 : 64 - 70
  • [9] Background-subtraction using contour-based fusion of thermal and visible imagery
    Davis, James W.
    Sharma, Vinay
    [J]. COMPUTER VISION AND IMAGE UNDERSTANDING, 2007, 106 (2-3) : 162 - 182
  • [10] Object detection based on combination of visible and thermal videos using a joint sample consensus background model
    Han, Guang
    Cai, Xi
    Wang, Jinkuan
    [J]. Journal of Software, 2013, 8 (04) : 987 - 994