Optical Flow Estimation in Ultrasound Images Using a Sparse Representation

被引:0
作者
Ouzir, N. [1 ]
Tourneret, J. -Y. [1 ]
Basarab, A. [2 ]
机构
[1] Univ Toulouse, INP ENSEEIHT IRIT TeSA, 2 Rue Camichel, F-31071 Toulouse 7, France
[2] Univ Toulouse, IRIT, CNRS UMR 5505, 118 Route Narbonne, F-31062 Toulouse 9, France
来源
2017 IEEE 7TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP) | 2017年
关键词
Optical flow; sparse representations; cardiac ultrasound; motion estimation; dictionary learning; MOTION ESTIMATION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper introduces a 2D optical flow estimation method for cardiac ultrasound imaging based on a sparse representation. The optical flow problem is regularized using a classical gradient-based smoothness term combined with a sparsity inducing regularization that uses a learned cardiac flow dictionary. A particular emphasis is put on the influence of the spatial and sparse regularizations on the optical flow estimation problem. A comparison with state-of-the-art methods using realistic simulations shows the competitiveness of the proposed method for cardiac motion estimation in ultrasound images.
引用
收藏
页数:5
相关论文
共 24 条
  • [1] K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation
    Aharon, Michal
    Elad, Michael
    Bruckstein, Alfred
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (11) : 4311 - 4322
  • [2] Alessandrini Martino, 2013, Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges. Third International Workshop, STACOM 2012. Held in Conjunction with MICCAI 2012. Revised Selected Papers, P159, DOI 10.1007/978-3-642-36961-2_19
  • [3] Detailed Evaluation of Five 3D Speckle Tracking Algorithms Using Synthetic Echocardiographic Recordings
    Alessandrini, Martino
    Heyde, Brecht
    Queiros, Sandro
    Cygan, Szymon
    Zontak, Maria
    Somphone, Oudom
    Bernard, Olivier
    Sermesant, Maxime
    Delingette, Herve
    Barbosa, Daniel
    De Craene, Mathieu
    O'Donnell, Matthew
    D'hooge, Jan
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (08) : 1915 - 1926
  • [4] Myocardial Motion Estimation from Medical Images Using the Monogenic Signal
    Alessandrini, Martino
    Basarab, Adrian
    Liebgott, Herve
    Bernard, Olivier
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2013, 22 (03) : 1084 - 1095
  • [5] A Database and Evaluation Methodology for Optical Flow
    Baker, Simon
    Scharstein, Daniel
    Lewis, J. P.
    Roth, Stefan
    Black, Michael J.
    Szeliski, Richard
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2011, 92 (01) : 1 - 31
  • [6] High accuracy optical flow estimation based on a theory for warping
    Brox, T
    Bruhn, A
    Papenberg, N
    Weickert, J
    [J]. COMPUTER VISION - ECCV 2004, PT 4, 2004, 2034 : 25 - 36
  • [7] Lung motion correction on respiratory gated 3-D PET/CT images
    Dawood, M
    Lang, N
    Jiang, XY
    Schäfers, KP
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2006, 25 (04) : 476 - 485
  • [8] Validation of optical-flow for quantification of myocardial deformations on simulated RT3D ultrasound
    Duan, Qi
    Angelini, Elsa
    Homma, Shunichi
    Laine, Andrew
    [J]. 2007 4TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING : MACRO TO NANO, VOLS 1-3, 2007, : 944 - +
  • [9] Image denoising via sparse and redundant representations over learned dictionaries
    Elad, Michael
    Aharon, Michal
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2006, 15 (12) : 3736 - 3745
  • [10] HEAS P, 2008, P INT C COMP VIS THE, P399