Local Solutions in Sobolev Spaces with Negative Indices for the Good Boussinesq Equation

被引:78
作者
Farah, Luiz Gustavo [1 ]
机构
[1] Inst Matematica Pura & Aplicada, BR-22460320 Rio De Janeiro, Brazil
关键词
Fourier restriction norm; Good Boussinesq equation; Ill-posedness; Local well-posedness; Sobolev spaces; ILL-POSEDNESS; GLOBAL EXISTENCE; KDV EQUATION; STABILITY; WAVES;
D O I
10.1080/03605300802682283
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the local well-posedness of the initial-value problem for the nonlinear good Boussinesq equation with data in Sobolev spaces Hs for negative indices of s.
引用
收藏
页码:52 / 73
页数:22
相关论文
共 19 条
[1]  
BEJENARU I, 1993, J FUNCT ANAL, V233, P228
[2]   Interaction equations for short and long dispersive waves [J].
Bekiranov, D ;
Ogawa, T ;
Ponce, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1998, 158 (02) :357-388
[3]   GLOBAL EXISTENCE OF SMOOTH SOLUTIONS AND STABILITY OF SOLITARY WAVES FOR A GENERALIZED BOUSSINESQ EQUATION [J].
BONA, JL ;
SACHS, RL .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 118 (01) :15-29
[4]  
Bourgain J., 1993, GEOM FUNCT ANAL, V3, P107
[5]  
Bourgain J., 1997, Selecta Math. (N.S.), V3, P115
[6]  
Bourgain J., 1993, GEOM FUNCT ANAL, V3, P209, DOI [10.1007/BF01895688, DOI 10.1007/BF01895688]
[7]  
Boussinesq J., 1872, J. Math. Pures Appl., V17, P55
[8]   STABILITY OF SOLITARY-WAVE PULSES IN SHAPE-MEMORY ALLOYS [J].
FALK, F ;
LAEDKE, EW ;
SPATSCHEK, KH .
PHYSICAL REVIEW B, 1987, 36 (06) :3031-3041
[9]   Existence and uniqueness for Boussinesq type equations on a circle [J].
Fang, YF ;
Grillakis, MG .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1996, 21 (7-8) :1253-1277
[10]   On the Cauchy problem for the Zakharov system [J].
Ginibre, J ;
Tsutsumi, Y ;
Velo, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1997, 151 (02) :384-436