Analysis of the role of the microporous layer in improving polymer electrolyte fuel cell performance

被引:103
作者
Zhou, J. [1 ]
Shukla, S. [1 ]
Putz, A. [2 ]
Secanell, M. [1 ]
机构
[1] Univ Alberta, Dept Mech Engn, Energy Syst Design Lab, Edmonton, AB, Canada
[2] AFCC Automot Fuel Cell Cooperat Corp, Burnaby, BC, Canada
基金
加拿大创新基金会; 加拿大自然科学与工程研究理事会;
关键词
GAS-DIFFUSION LAYERS; LIQUID WATER DISTRIBUTION; ANALYZING 2-PHASE FLOW; MICRO-POROUS LAYERS; THERMAL-CONDUCTIVITY; CATALYST LAYERS; POROSITY DISTRIBUTIONS; MATHEMATICAL-MODEL; MEMBRANE; TRANSPORT;
D O I
10.1016/j.electacta.2018.02.100
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A multi-dimensional, non-isothermal, two-phase numerical model is used to understand the role of the microporous layer (MPL) in improving polymer electrolyte fuel cell (PEFC) performance. The model is validated under varying operating conditions against experimental data from conventional PEFCs in literature and low loading electrodes measured in-house with and without an MPL. Under dry conditions, the MPL is found to have a minimal effect on cell performance, except for improving ohmic transport and performance stability. Under wet conditions, results show that the MPL increases the temperature in the catalyst coated membrane, thereby enhancing evaporation in the cathode and creating a larger sorbed water gradient across the membrane which results in improved water vapor transport out of the cathode and increased diffusion from cathode to anode, respectively. A mild improvement in performance is also observed due to improved in-plane diffusion once an MPL is introduced as a result of the smaller pore size and hydrophobic nature of the MPL. A parametric study suggests that gas diffusion layer and MPL thermal conductivity are the most critical parameters to improve fuel cell performance followed by thickness and hydrophilic percentage. Other microstructural parameters appear to have minimal effect. An optimal thermal conductivity and hydrophilic percentage exist that achieve optimal fuel cell performance under fully humidified conditions. (c) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:366 / 382
页数:17
相关论文
共 78 条
[1]   Correlation of In Situ and Ex Situ Measurements of Water Permeation Through Nafion NRE211 Proton Exchange Membranes [J].
Adachi, Makoto ;
Navessin, Titichai ;
Xie, Zhong ;
Frisken, Barbara ;
Holdcroft, Steven .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (06) :B782-B790
[2]   The influence of porous transport layer modifications on the water management in polymer electrolyte membrane fuel cells [J].
Alink, R. ;
Haussmann, J. ;
Markoetter, H. ;
Schwager, M. ;
Manke, I. ;
Gerteisen, D. .
JOURNAL OF POWER SOURCES, 2013, 233 :358-368
[3]   Hybrid scheduling for the parallel solution of linear systems [J].
Amestoy, PR ;
Guermouche, A ;
L'Excellent, JY ;
Pralet, S .
PARALLEL COMPUTING, 2006, 32 (02) :136-156
[4]  
[Anonymous], INT J NUMERICAL METH
[5]   Experimental investigation of the role of a microporous layer on the water transport and performance of a PEM fuel cell [J].
Atiyeh, Hasan K. ;
Karan, Kunal ;
Peppley, Brant ;
Phoenix, Aaron ;
Halliop, Ela ;
Pharoah, Jon .
JOURNAL OF POWER SOURCES, 2007, 170 (01) :111-121
[6]   The Role of Compressive Stress on Gas Diffusion Media Morphology and Fuel Cell Performance [J].
Atkinson, Robert W., III ;
Garsany, Yannick ;
Gould, Benjamin D. ;
Swider-Lyons, Karen E. ;
Zenyuk, Iryna V. .
ACS APPLIED ENERGY MATERIALS, 2018, 1 (01) :191-201
[7]   The effect of MPL permeability on water fluxes in PEM fuel cells: A lumped approach [J].
Baghalha, M. ;
Eikerling, M. ;
Stumper, J. .
POLYMER ELECTROLYTE FUEL CELLS 10, PTS 1 AND 2, 2010, 33 (01) :1529-+
[8]   The deal.II Library, Version 8.4 [J].
Bangerth, Wolfgang ;
Davydov, Denis ;
Heister, Timo ;
Heltai, Luca ;
Kanschat, Guido ;
Kronbichler, Martin ;
Maier, Matthias ;
Turcksin, Bruno ;
Wells, David .
JOURNAL OF NUMERICAL MATHEMATICS, 2016, 24 (03) :135-141
[9]  
Bekkedahl T., 2007, DOE HIGH TEMP MEMBR
[10]   Analysis of non-isothermal effects on polymer electrolyte fuel cell electrode assemblies [J].
Bhaiya, M. ;
Putz, A. ;
Secanell, M. .
ELECTROCHIMICA ACTA, 2014, 147 :294-309