Crystal chemistry and electrochemical characterization of layered LiNi0.5-yCo0.5-yMn2yO2 and LiCo0.5-yMn0.5-yNi2yO2 (0 ≤ 2y ≤ 1) cathodes

被引:42
作者
Choi, J. [1 ]
Manthiram, A. [1 ]
机构
[1] Univ Texas, Mat Sci & Engn Program, Austin, TX 78712 USA
关键词
lithium ion batteries; layered oxides; cation disorder; crystal chemistry; rate capability;
D O I
10.1016/j.jpowsour.2006.06.031
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The crystal chemistry and electrochemical performance of the layered LiNi0 .5--yCo0.5--yMn2yO2 and LiCo0.5._Mn-y(0.5)_yNi2yO2 oxide cathodes for 0 <= 2y <= 1 have been investigated. Li2MnO3 impurity phase is observed for Mn-rich compositions with 2y > 0.6 in LiNi0.5--yCo0.5--yMn2yO2 and 2y < 0.2 in LiCo0.5_yMn0.5--yNi2yO2. Additionally, the Ni-rich compositions encounter a volatilization of lithium at the high synthesis temperature of 900 C-o. Compositions around 2y = 0.33 are found to be optimum with respect to maximizing the capacity values and retention. The rate capabilities are found to bear a strong relationship to the cation disorder in the layered lattice. Moreover, the evolution of the X-ray diffraction patterns on chemically extracting lithium has revealed the presence of Li2MnO3 phase in addition to the layered phase for the composition LiNi0.25Co0.25Mn0.5O2 with an oxidation state of manganese close to 4+, which results in a large anodic peak at around 4.5 V due to the extraction of both lithium and oxygen. (C) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:667 / 672
页数:6
相关论文
共 22 条
[1]   CHARACTERIZATION AND CATHODE PERFORMANCE OF LI-1-XNI1+XO2 PREPARED WITH THE EXCESS LITHIUM METHOD [J].
ARAI, H ;
OKADA, S ;
OHTSUKA, H ;
ICHIMURA, M ;
YAMAKI, J .
SOLID STATE IONICS, 1995, 80 (3-4) :261-269
[2]   Structural instability of delithiated Li1-xNi1-yCoyO2 cathodes [J].
Chebiam, RV ;
Prado, F ;
Manthiram, A .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (01) :A49-A53
[3]   Comparison of the chemical stability of Li1-xCoO2 and Li1-xNi0.85Co0.15O2 cathodes [J].
Chebiam, RV ;
Prado, F ;
Manthiram, A .
JOURNAL OF SOLID STATE CHEMISTRY, 2002, 163 (01) :5-9
[4]   Soft chemistry synthesis and characterization of layered Li1-xNi1-yCoyO2-δ (0 ≤ x ≤ 1 and 0 ≤ y ≤ 1) [J].
Chebiam, RV ;
Prado, F ;
Manthiram, A .
CHEMISTRY OF MATERIALS, 2001, 13 (09) :2951-2957
[5]   Factors influencing the crystal chemistry of chemically delithiated layered HxNi1-y-zMnyCozO2 [J].
Choi, J ;
Manthiram, A .
JOURNAL OF MATERIALS CHEMISTRY, 2006, 16 (18) :1726-1733
[6]   Structural and electrochemical characterization of the layered LiNi0.5-γMn0.5-γCo2γO2 (0 ≤ 2γ ≤ 1) cathodes [J].
Choi, J ;
Manthiram, A .
SOLID STATE IONICS, 2005, 176 (29-30) :2251-2256
[7]   Comparison of the electrochemical behaviors of stoichiometric LiNi1/3Co1/3Mn1/3O2 and lithium excess Li1.03(Ni1/3Co1/3Mn1/3)0.97O2 [J].
Choi, J ;
Manthiram, A .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2004, 7 (10) :A365-A368
[8]   Factors influencing the layered to spinel-like phase transition in layered oxide cathodes [J].
Choi, S ;
Manthiram, A .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (09) :A1157-A1163
[9]   STRUCTURAL CLASSIFICATION AND PROPERTIES OF THE LAYERED OXIDES [J].
DELMAS, C ;
FOUASSIER, C ;
HAGENMULLER, P .
PHYSICA B & C, 1980, 99 (1-4) :81-85
[10]   Changes in the structure and physical properties of the solid solution LiNi1-xMnxO2 with variation in its composition [J].
Kobayashi, H ;
Sakaebe, H ;
Kageyama, H ;
Tatsumi, K ;
Arachi, Y ;
Kamiyama, T .
JOURNAL OF MATERIALS CHEMISTRY, 2003, 13 (03) :590-595