Finite-dimensional representations of a shock algebra

被引:5
作者
Speer, ER
机构
[1] Department of Mathematics, Rutgers University, New Brunswick
关键词
asymmetric simple exclusion process; weakly asymmetric limit; shock profiles; second-class particles; Burgers equation;
D O I
10.1007/BF02770759
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The algebra describing a shock measure in the asymmetric simple exclusion model, seen from a second class particle, has finite-dimensional representations if and only if the asymmetry parameter p of the model and the left and right asymptotic densities rho(+/-) of the shock satisfy [(1-p)/p](r)=rho(-)(1-rho(+))/rho(+)(1-rho(-)) for some integer r greater than or equal to 1; the minimal dimension of the representation is then 2r. These representations can be used to calculate correlation functions in the model.
引用
收藏
页码:169 / 175
页数:7
相关论文
共 5 条
[1]   Shock profiles for the asymmetric simple exclusion process in one dimension [J].
Derrida, B ;
Lebowitz, JL ;
Speer, ER .
JOURNAL OF STATISTICAL PHYSICS, 1997, 89 (1-2) :135-167
[2]   Representations of the quadratic algebra and partially asymmetric diffusion with open boundaries [J].
Essler, FHL ;
Rittenberg, V .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (13) :3375-3407
[3]  
Halmos PR., 1958, FINITE DIMENSIONAL V
[4]  
Kassel C., 1995, GTM, V155
[5]   Finite-dimensional representations of the quadratic algebra: Applications to the exclusion process [J].
Mallick, K ;
Sandow, S .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (13) :4513-4526