Numerical solution of polymer self-consistent field theory

被引:151
|
作者
Ceniceros, HD [1 ]
Fredrickson, GH
机构
[1] Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
[2] Univ Calif Santa Barbara, Dept Chem Engn, Santa Barbara, CA 93106 USA
[3] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA
[4] Univ Calif Santa Barbara, Mat Res Lab, Santa Barbara, CA 93106 USA
来源
MULTISCALE MODELING & SIMULATION | 2004年 / 2卷 / 03期
关键词
diblock coplymers; incompressible melt blend; semi-implicit methods; multilevel relaxation;
D O I
10.1137/030601338
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We propose efficient pseudospectral numerical schemes for solving the self-consistent, mean-field equations for inhomogeneous polymers. In particular, we introduce a robust class of semi-implicit methods that employ asymptotic small scale information about the nonlocal density operators. The relaxation schemes are further embedded in a multilevel strategy resulting in a method that can cut down the computational cost by an order of magnitude. Three illustrative problems are used to test the numerical methods: (i) the problem of finding the mean chemical potential field for a prescribed inhomogeneous density of homopolymers; (ii) an incompressible melt blend of two chemically distinct homopolymers; and (iii) an incompressible melt of AB diblock copolymers.
引用
收藏
页码:452 / 474
页数:23
相关论文
共 50 条
  • [21] Self-consistent field theory of polymer-ionic molecule complexation
    Nakamura, Issei
    Shi, An-Chang
    JOURNAL OF CHEMICAL PHYSICS, 2010, 132 (19):
  • [22] THE SELF-CONSISTENT FIELD-THEORY FOR POLYMER ADSORPTION - EXTENSIONS AND REFINEMENTS
    PLOEHN, HJ
    RUSSEL, WB
    HALL, CK
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1987, 194 : 13 - POLY
  • [23] RuSseL: A Self-Consistent Field Theory Code for Inhomogeneous Polymer Interphases
    Revelas, Constantinos J.
    Sgouros, Aristotelis P.
    Lakkas, Apostolos T.
    Theodorou, Doros N.
    COMPUTATION, 2021, 9 (05)
  • [24] A numerical study of spherical polyelectrolyte brushes by the self-consistent field theory
    Quan, Guangyan
    Wang, Meiling
    Tong, Chaohui
    POLYMER, 2014, 55 (25) : 6604 - 6613
  • [25] New Numerical Implementation of Self-Consistent Field Theory for Semiflexible Polymers
    Song, Wendi
    Tang, Ping
    Zhang, Hongdong
    Yang, Yuliang
    Shi, An-Chang
    MACROMOLECULES, 2009, 42 (16) : 6300 - 6309
  • [26] A SELF-CONSISTENT SOLUTION FOR NONLINEAR THEORY OF THE POSITIVE COLUMN IN A MAGNETIC FIELD
    Xu Fu
    Tang Fulin
    Chen Leshan Institute of Mechanics
    Acta Mechanica Sinica, 1985, (02) : 107 - 116
  • [27] EXTENSIONS OF THE SELF-CONSISTENT FIELD-THEORY OF POLYMER ADSORPTION - MATCHED ASYMPTOTIC SOLUTION DESCRIBING TAILS
    PLOEHN, HJ
    RUSSEL, WB
    COLLOIDS AND SURFACES, 1988, 31 : 31 - 32
  • [28] THEORY OF SOLID-SOLUTION PRECIPITATION IN THE SELF-CONSISTENT FIELD APPROXIMATION
    GRANKINA, AI
    GRUDSKII, IM
    GUFAN, YM
    FIZIKA TVERDOGO TELA, 1987, 29 (11): : 3456 - 3459
  • [29] SELF-CONSISTENT THEORY OF POLYMER DYNAMICS IN MELTS
    SZLEIFER, I
    WILSON, JD
    LORING, RF
    JOURNAL OF CHEMICAL PHYSICS, 1991, 95 (11): : 8474 - 8485
  • [30] Efficient order-adaptive methods for polymer self-consistent field theory
    Ceniceros, Hector D.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 386 : 9 - 21