Numerical solution of polymer self-consistent field theory

被引:151
|
作者
Ceniceros, HD [1 ]
Fredrickson, GH
机构
[1] Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
[2] Univ Calif Santa Barbara, Dept Chem Engn, Santa Barbara, CA 93106 USA
[3] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA
[4] Univ Calif Santa Barbara, Mat Res Lab, Santa Barbara, CA 93106 USA
来源
MULTISCALE MODELING & SIMULATION | 2004年 / 2卷 / 03期
关键词
diblock coplymers; incompressible melt blend; semi-implicit methods; multilevel relaxation;
D O I
10.1137/030601338
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We propose efficient pseudospectral numerical schemes for solving the self-consistent, mean-field equations for inhomogeneous polymers. In particular, we introduce a robust class of semi-implicit methods that employ asymptotic small scale information about the nonlocal density operators. The relaxation schemes are further embedded in a multilevel strategy resulting in a method that can cut down the computational cost by an order of magnitude. Three illustrative problems are used to test the numerical methods: (i) the problem of finding the mean chemical potential field for a prescribed inhomogeneous density of homopolymers; (ii) an incompressible melt blend of two chemically distinct homopolymers; and (iii) an incompressible melt of AB diblock copolymers.
引用
收藏
页码:452 / 474
页数:23
相关论文
共 50 条
  • [1] Numerical self-consistent field theory of multicomponent polymer blends in the Gibbs ensemble
    Mester, Zoltan
    Lynd, Nathaniel A.
    Fredrickson, Glenn H.
    SOFT MATTER, 2013, 9 (47) : 11288 - 11294
  • [2] Applications of self-consistent field theory in polymer systems
    Yuliang Yang
    Feng Qiu
    Ping Tang
    Hongdong Zhang
    Science in China Series B, 2006, 49 : 21 - 43
  • [3] Applications of self-consistent field theory in polymer systems
    YANG Yuliang
    Science in China(Series B:Chemistry), 2006, (01) : 21 - 43
  • [4] Applications of self-consistent field theory in polymer systems
    Yang, YL
    Qiu, F
    Tang, P
    Zhang, HD
    SCIENCE IN CHINA SERIES B-CHEMISTRY, 2006, 49 (01): : 21 - 43
  • [5] Polymer brushes: From self-consistent field theory to classical theory
    Netz, RR
    Schick, M
    MACROMOLECULES, 1998, 31 (15) : 5105 - 5122
  • [6] Dynamical self-consistent field theory for inhomogeneous polymer systems
    Kawakatsu, T
    SLOW DYNAMICS IN COMPLEX SYSTEMS, 2004, 708 : 265 - 266
  • [7] Hydrodynamic self-consistent field theory for inhomogeneous polymer melts
    Hall, David M.
    Lookman, Turab
    Fredrickson, Glenn H.
    Banerjee, Sanjoy
    PHYSICAL REVIEW LETTERS, 2006, 97 (11)
  • [8] Nonequilibrium Molecular Conformations in Polymer Self-Consistent Field Theory
    Mueller, Marcus
    Sollich, Peter
    Sun, De-Wen
    MACROMOLECULES, 2020, 53 (23) : 10457 - 10474
  • [9] Numerical Self-Consistent Field Theory of Cylindrical Polyelectrolyte Brushes
    Qu, Li-Jian
    Jin, Xigao
    Liao, Qi
    MACROMOLECULAR THEORY AND SIMULATIONS, 2009, 18 (03) : 162 - 170
  • [10] Perturbation theory about generalized self-consistent field solution
    Yang, C
    Kocharian, AN
    Chiang, YL
    Chen, LY
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2005, 19 (14): : 2225 - 2249