Special numbers of rational points on hypersurfaces in the n-dimensional projective space over a finite field

被引:9
作者
Sboui, Adnen [1 ,2 ]
机构
[1] Math Campll Univ Caen, CNRS, LMNO, UMR 6139, F-14000 Caen, France
[2] Fac Sci Tunis, Dept Math, Tunis 1060, Tunisia
关键词
Hyperplane arrangements; Hypersurfaces; Rational points; Homogeneous polynomials; Projective Reed-Muller codes;
D O I
10.1016/j.disc.2009.03.021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study first some arrangements of hyperplanes in the n-dimensional projective space P-n(F-q). Then we compute, in particular, the second and the third highest numbers of rational points on hypersurfaces of degree d. As an application of our results, we obtain some weights of the Generalized Projective Reed-Muller codes PRM(q, d, n). We also list all the homogeneous polynomials reaching such numbers of zeros and giving the correspondent weights. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:5048 / 5059
页数:12
相关论文
共 11 条
[1]  
AUBRY Y, 1992, LECT NOTES MATH, V1518, P4
[2]  
Cherdieu J. P., 1996, Finite Fields and their Applications, V2, P214, DOI 10.1006/ffta.1996.0014
[3]   ON GENERALIZED REED-MULLER CODES AND THEIR RELATIVES [J].
DELSARTE, P ;
GOETHALS, JM ;
MACWILLI.FJ .
INFORMATION AND CONTROL, 1970, 16 (05) :403-&
[4]  
Kasami T., 1968, IEEE Transactions on Information Theory, V14
[5]   THE PARAMETERS OF PROJECTIVE REED-MULLER CODES [J].
LACHAUD, G .
DISCRETE MATHEMATICS, 1990, 81 (02) :217-221
[6]   Second highest number of points of hypersurfaces in Fnq [J].
Sboui, Adnen .
FINITE FIELDS AND THEIR APPLICATIONS, 2007, 13 (03) :444-449
[7]  
SERRE JP, 1991, ASTERISQUE, V198
[8]   PROJECTIVE REED-MULLER CODES [J].
SORENSEN, AB .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1991, 37 (06) :1567-1576
[9]   ON THE NUMBER OF RATIONAL-POINTS ON CODIMENSION-1 ALGEBRAIC-SETS IN P-N(F-Q) [J].
SORENSEN, AB .
DISCRETE MATHEMATICS, 1994, 135 (1-3) :321-334
[10]  
THAS K, 2006, ATT SEM MAT FIS U MO, V54, P1