Direct force measurement of the stability of poly(ethylene glycol)-polyethylenimine graft films

被引:20
作者
Nnebe, IM
Tilton, RD
Schneider, JW [1 ]
机构
[1] Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA
[2] Carnegie Mellon Univ, Dept Biomed Engn, Pittsburgh, PA 15213 USA
基金
美国国家科学基金会;
关键词
atomic force microscopy; force measurement; polymers; poly(ethylene glycol); stability; colloidal-probe AFM;
D O I
10.1016/j.jcis.2004.03.065
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The stability and passivity of poly(ethylene glycol)-polyethylenimine (PEG-PEI) graft films are important for their use as antifouling coatings in a variety of biotechnology applications, We have used AFM colloidal-probe force measurements combined with optical reflectometry to characterize the surface properties and stability of PEI and dense PEG-PEI graft films on silica. Initial contact between bare silica probes and PEI-modified surfaces yields force curves that exhibit a long-range electrostatic repulsion and short-range attraction between the surfaces, indicating spontaneous desorption of PEI in the aqueous medium. Further transfer of PEI molecules to the probe occurs with subsequent application of forces between FR = 300 and 500 muN/m. The presence of PEG reduces the adhesive properties of the PEI surface and prevents transfer of PEI molecules to the probe with continuous contact, though an initial desorption of PEI still occurs. Glutaraldehyde crosslinking of the graft films prevents both the initial desorption and subsequent transfer of the PEI, resulting in sustained attractive interaction forces of electrostatic origin between the negatively charged probe and the positively charged copolymer graft films. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:306 / 316
页数:11
相关论文
共 60 条
[1]   Chemical imaging of single polyethylenimine polymers by chemical force microscopy [J].
Akari, S ;
Schrepp, W ;
Horn, D .
BERICHTE DER BUNSEN-GESELLSCHAFT-PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 1996, 100 (06) :1014-1016
[2]  
Alcantar NA, 2000, J BIOMED MATER RES, V51, P343, DOI 10.1002/1097-4636(20000905)51:3<343::AID-JBM7>3.0.CO
[3]  
2-D
[4]   ADSORPTION OF CHAIN MOLECULES WITH A POLAR HEAD A-SCALING DESCRIPTION [J].
ALEXANDER, S .
JOURNAL DE PHYSIQUE, 1977, 38 (08) :983-987
[5]   PREPARATION OF A POROUS MICROPARTICULATE ANION-EXCHANGE CHROMATOGRAPHY SUPPORT FOR PROTEINS [J].
ALPERT, AJ ;
REGNIER, FE .
JOURNAL OF CHROMATOGRAPHY, 1979, 185 (DEC) :375-392
[6]   CALCULATION OF ELECTRIC DOUBLE-LAYER FORCE BETWEEN UNLIKE SPHERES [J].
BELL, GM ;
PETERSON, GC .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1972, 41 (03) :542-566
[7]   Non-equilibrium interaction forces between adsorbed polymer layers [J].
Biggs, S .
JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS, 1996, 92 (15) :2783-2789
[8]   Forces between silica surfaces in aqueous solutions of a weak polyelectrolyte [J].
Biggs, S ;
Proud, AD .
LANGMUIR, 1997, 13 (26) :7202-7210
[9]   A streptavidin surface on planar glass substrates for the detection of biomolecular interaction [J].
Birkert, O ;
Haake, HM ;
Schütz, A ;
Mack, J ;
Brecht, A ;
Jung, G ;
Gauglitz, G .
ANALYTICAL BIOCHEMISTRY, 2000, 282 (02) :200-208
[10]   Proton binding characteristics of branched polyelectrolytes [J].
Borkovec, M ;
Koper, GJM .
MACROMOLECULES, 1997, 30 (07) :2151-2158