Global existence of solutions for the Cauchy problem of the Kawahara equation with L2 initial data

被引:96
作者
Cui, Shang Bin [1 ]
Deng, Dong Gao
Tao, Shuang Ping
机构
[1] Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Peoples R China
[2] NW Normal Univ, Dept Math, Lanzhou 730070, Peoples R China
基金
中国国家自然科学基金;
关键词
Kawahara equation; Cauchy problem; global solution;
D O I
10.1007/s10114-005-0710-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study solvability of the Cauchy problem of the Kawahara equation partial derivative(t)u + au partial derivative(x)u + beta partial derivative(3)(x)u + gamma partial derivative(5)(x)u = 0 with L-2 initial data. By working on the Bourgain space X-r,X-s(R-2) associated with this equation, we prove that the Cauchy problem of the Kawahara equation is locally solvable if initial data belong to Hr(R) and -1 < r < 0. This result combined with the energy conservation law of the Kawahara equation yields that global solutions exist if initial data belong to L-2 (R).
引用
收藏
页码:1457 / 1466
页数:10
相关论文
共 18 条
[1]  
Abramyan L. A., 1985, Soviet Physics - JETP, V61, P963
[2]  
Bourgain J., 1993, Geometric Functional Analysis GAFA, V3, P209
[3]  
Bourgain J., 1993, GEOM FUNCT ANAL, V3, P315
[4]  
Bourgain J., 1993, GEOM FUNCT ANAL, V3, P209
[5]   WEAKLY NONLOCAL SOLITONS FOR CAPILLARY-GRAVITY WAVES - 5TH-DEGREE KORTEWEG-DEVRIES EQUATION [J].
BOYD, JP .
PHYSICA D-NONLINEAR PHENOMENA, 1991, 48 (01) :129-146
[6]  
CUI S, IN PRESS J MATH ANAL
[7]  
Gorshkov K.A., 1977, SOV PHYS JETP, V46, P92
[8]   WEAKLY NONLOCAL SOLITARY WAVES IN A SINGULARLY PERTURBED KORTEWEG-DEVRIES EQUATION [J].
GRIMSHAW, R ;
JOSHI, N .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1995, 55 (01) :124-135
[9]   EXISTENCE OF PERTURBED SOLITARY WAVE SOLUTIONS TO A MODEL EQUATION FOR WATER-WAVES [J].
HUNTER, JK ;
SCHEURLE, J .
PHYSICA D, 1988, 32 (02) :253-268
[10]  
Il'chev A. T., 1992, Theoretical and Computational Fluid Dynamics, V3, P307, DOI 10.1007/BF00417931