On Numerical Realization of Quasioptimal Parameter Choices in (iterated) Tikhonov and Lavrentiev Regularization

被引:13
|
作者
Raus, T. [1 ]
Hamarik, U. [1 ]
机构
[1] Univ Tartu, Inst Math, EE-50409 Tartu, Estonia
关键词
ill-posed problem; regularization; (iterated) Tikhonov method; (iterated) Lavrentiev method; quasioptimal rules; parameter choice; numerical schemes; ILL-POSED PROBLEMS; HILBERT SCALES;
D O I
10.3846/1392-6292.2009.14.99-108
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider linear ill-posed problems in Hilbert spaces with noisy right hand side and given noise level. For approximation of the solution the Tikhonov method or the iterated variant of this method may be used. In self-adjoint problems the Lavrentiev method or its iterated variant are used. For a posteriori choice of the regularization parameter often quasioptimal rules are used which require computing of additionally iterated approximations. In this paper we propose for parameter choice alternative numerical schemes, using instead of additional iterations linear combinations of approximations with different parameters.
引用
收藏
页码:99 / 108
页数:10
相关论文
共 50 条
  • [21] Multi-parameter regularization and its numerical realization
    Shuai Lu
    Sergei V. Pereverzev
    Numerische Mathematik, 2011, 118 : 1 - 31
  • [22] Multi-parameter regularization and its numerical realization
    Lu, Shuai
    Pereverzev, Sergei V.
    NUMERISCHE MATHEMATIK, 2011, 118 (01) : 1 - 31
  • [23] On the choice of solution subspace for nonstationary iterated Tikhonov regularization
    Huang, Guangxin
    Reichel, Lothar
    Yin, Feng
    NUMERICAL ALGORITHMS, 2016, 72 (04) : 1043 - 1063
  • [25] On the choice of solution subspace for nonstationary iterated Tikhonov regularization
    Guangxin Huang
    Lothar Reichel
    Feng Yin
    Numerical Algorithms, 2016, 72 : 1043 - 1063
  • [26] Solution of the Cauchy problem using iterated Tikhonov regularization
    Cimetière, A
    Delvare, F
    Jaoua, M
    Pons, F
    INVERSE PROBLEMS, 2001, 17 (03) : 553 - 570
  • [27] Iterated Tikhonov Regularization for Spectral Recovery from Tristimulus
    Xie De-hong
    Li Rui
    Wan Xiao-xia
    Liu Qiang
    Zhu Wen-feng
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36 (01) : 201 - 205
  • [28] An Arnoldi-based preconditioner for iterated Tikhonov regularization
    Buccini, Alessandro
    Onisk, Lucas
    Reichel, Lothar
    NUMERICAL ALGORITHMS, 2023, 92 (01) : 223 - 245
  • [29] On nondecreasing sequences of regularization parameters for nonstationary iterated Tikhonov
    Marco Donatelli
    Numerical Algorithms, 2012, 60 : 651 - 668
  • [30] Generalized singular value decomposition with iterated Tikhonov regularization
    Buccini, Alessandro
    Pasha, Mirjeta
    Reichel, Lothar
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 373 (373)