On Numerical Realization of Quasioptimal Parameter Choices in (iterated) Tikhonov and Lavrentiev Regularization

被引:13
|
作者
Raus, T. [1 ]
Hamarik, U. [1 ]
机构
[1] Univ Tartu, Inst Math, EE-50409 Tartu, Estonia
关键词
ill-posed problem; regularization; (iterated) Tikhonov method; (iterated) Lavrentiev method; quasioptimal rules; parameter choice; numerical schemes; ILL-POSED PROBLEMS; HILBERT SCALES;
D O I
10.3846/1392-6292.2009.14.99-108
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider linear ill-posed problems in Hilbert spaces with noisy right hand side and given noise level. For approximation of the solution the Tikhonov method or the iterated variant of this method may be used. In self-adjoint problems the Lavrentiev method or its iterated variant are used. For a posteriori choice of the regularization parameter often quasioptimal rules are used which require computing of additionally iterated approximations. In this paper we propose for parameter choice alternative numerical schemes, using instead of additional iterations linear combinations of approximations with different parameters.
引用
收藏
页码:99 / 108
页数:10
相关论文
共 50 条
  • [11] Projected nonstationary iterated Tikhonov regularization
    Guangxin Huang
    Lothar Reichel
    Feng Yin
    BIT Numerical Mathematics, 2016, 56 : 467 - 487
  • [12] A class of parameter choice rules for stationary iterated weighted Tikhonov regularization scheme
    Reddy, G. D.
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 347 : 464 - 476
  • [13] Projected nonstationary iterated Tikhonov regularization
    Huang, Guangxin
    Reichel, Lothar
    Yin, Feng
    BIT NUMERICAL MATHEMATICS, 2016, 56 (02) : 467 - 487
  • [14] A REGULARIZATION PARAMETER FOR NONSMOOTH TIKHONOV REGULARIZATION
    Ito, Kazufumi
    Jin, Bangti
    Takeuchi, Tomoya
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2011, 33 (03): : 1415 - 1438
  • [15] Exploring Possible Choices of the Tikhonov Regularization Parameter for the Method of Fundamental Solutions in Electrocardiography
    Chamorro-Servent, J.
    Dubois, R.
    Coudiere, Y.
    2017 COMPUTING IN CARDIOLOGY (CINC), 2017, 44
  • [16] Iterated Tikhonov regularization with a general penalty term
    Buccini, Alessandro
    Donatelli, Marco
    Reichel, Lothar
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2017, 24 (04)
  • [17] On the convergence of the quasioptimality criterion for (iterated) Tikhonov regularization
    Kindermann, Stefan
    Neubauer, Andreas
    INVERSE PROBLEMS AND IMAGING, 2008, 2 (02) : 291 - 299
  • [18] On a generalization of Reginska's parameter choice rule and its numerical realization in large-scale multi-parameter Tikhonov regularization
    Viloche Bazan, Fermin S.
    Borges, Leonardo S.
    Francisco, Juliano B.
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (04) : 2100 - 2113
  • [19] Error estimates for joint Tikhonov and Lavrentiev regularization of constrained control problems
    Lorenz, Dirk A.
    Roesch, Arnd
    APPLICABLE ANALYSIS, 2010, 89 (11) : 1679 - 1691
  • [20] NUMERICAL REALIZATION OF AN OPTIMAL DISCREPANCY PRINCIPLE FOR TIKHONOV-REGULARIZATION IN HILBERT SCALES
    NEUBAUER, A
    COMPUTING, 1987, 39 (01) : 43 - 55