Optimal control for a coupled spin-polarized current and magnetization system

被引:7
作者
An, Xin [1 ]
Majee, Ananta K. [2 ]
Prohl, Andreas [3 ]
Tran, Thanh [1 ]
机构
[1] Univ New South Wales, Sch Math & Stat, Sydney, NSW 2051, Australia
[2] Indian Inst Technol Delhi, Dept Math, New Delhi 110016, India
[3] Univ Tubingen, Math Inst, Morgenstelle 10, D-72076 Tubingen, Germany
基金
澳大利亚研究理事会;
关键词
Micromagnetism; Landau-Lifshitz-Gilbert equation; Optimal control; Faedo-Galerkin approximation; LANDAU-LIFSHITZ EQUATIONS; EXISTENCE; TRANSPORT;
D O I
10.1007/s10444-022-09947-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to an optimal control problem of a coupled spin drift-diffusion Landau-Lifshitz-Gilbert system describing the interplay of magnetization and spin accumulation in magnetic-nonmagnetic multilayer structures, where the control is given by the electric current density. A variational approach is used to prove the existence of an optimal control. The first-order necessary optimality system for the optimal solution is derived in one space-dimension via Lagrange multiplier method. Numerical examples are reported to validate the theoretical findings.
引用
收藏
页数:40
相关论文
共 34 条
[1]   Micromagnetics and spintronics: models and numerical methods [J].
Abert, Claas .
EUROPEAN PHYSICAL JOURNAL B, 2019, 92 (06)
[2]   Fieldlike and Dampinglike Spin-Transfer Torque in Magnetic Multilayers [J].
Abert, Claas ;
Sepehri-Amin, Hossein ;
Bruckner, Florian ;
Vogler, Christoph ;
Hayashi, Masamitsu ;
Suess, Dieter .
PHYSICAL REVIEW APPLIED, 2017, 7 (05)
[3]   Spin-polarized transport in ferromagnetic multilayers: An unconditionally convergent FEM integrator [J].
Abert, Claas ;
Hrkac, Gino ;
Page, Marcus ;
Praetorius, Dirk ;
Ruggeri, Michele ;
Suess, Dieter .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 68 (06) :639-654
[4]   CONTROL OF A NETWORK OF MAGNETIC ELLIPSOIDAL SAMPLES [J].
Agarwal, Shruti ;
Carbou, Gilles ;
Labbe, Stephane ;
Prieur, Christophe .
MATHEMATICAL CONTROL AND RELATED FIELDS, 2011, 1 (02) :129-147
[5]   ON GLOBAL WEAK SOLUTIONS FOR LANDAU-LIFSHITZ EQUATIONS - EXISTENCE AND NONUNIQUENESS [J].
ALOUGES, F ;
SOYEUR, A .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1992, 18 (11) :1071-1084
[6]   MAGNETIZATION SWITCHING ON SMALL FERROMAGNETIC ELLIPSOIDAL SAMPLES [J].
Alouges, Francois ;
Beauchard, Karine .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2009, 15 (03) :676-711
[7]  
[Anonymous], 2010, Partial Differential Equations
[8]  
Carbou G., 2001, Differ. Integr. Equ., V14, P213
[9]  
Chen Y., 1996, J. Part. Differ. Equ, V9, P313
[10]   Optimal control in evolutionary micromagnetism [J].
Dunst, Thomas ;
Klein, Markus ;
Prohl, Andreas .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2015, 35 (03) :1342-1380