A fully adaptive multiresolution scheme for shock computations

被引:0
|
作者
Kaibara, MK [1 ]
Gomes, SM [1 ]
机构
[1] Univ Estadual Paulista, Dept Matemat, BR-17033360 Bauru, SP, Brazil
来源
GODUNOV METHODS: THEORY AND APPLICATIONS | 2001年
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The scheme is based on Ami Harten's ideas (Harten, 1994), the main tools coming from wavelet theory, in the framework of multiresolution analysis for cell averages. But instead of evolving cell averages on the finest uniform level, we propose to evolve just the cell averages on the grid determined by the significant wavelet coefficients. Typically, there are few cells in each time step, big cells on smooth regions, and smaller ones close to irregularities of the solution. For the numerical flux, we use a simple uniform central finite difference scheme, adapted to the size of each cell. If any of the required neighboring cell averages is not present, it is interpolated from coarser scales. But we switch to ENO scheme in the finest part of the grids. To show the feasibility and efficiency of the method, it is applied to a system arising in polymer-flooding of an oil reservoir. In terms of CPU time and memory requirements, it outperforms Harten's multiresolution algorithm. The proposed method applies to systems of conservation laws in 1D partial derivative(t)u(x, t) + partial derivative(x)f(u(x, t)) = 0, u(x, t) is an element of R-m. (1) In the spirit of finite volume methods, we shall consider the explicit scheme upsilon(mu)(n+1) = upsilon(mu)(n) - Deltat/hmu ((f) over bar (mu) - (f) over bar (mu)-) = [Dupsilon(n)](mu), (2) where mu is a point of an irregular grid Gamma, mu(-) is the left neighbor of A in Gamma, upsilon(mu)(n) approximate to 1/mu-mu(-) integral(mu-)(mu) u(x, t(n))dx are approximated cell averages of the solution, (f) over bar (mu) = (f) over bar (mu)(upsilon(n)) are the numerical fluxes, and D is the numerical evolution operator of the scheme. According to the definition of (f) over bar (mu), several schemes of this type have been proposed and successfully applied (LeVeque, 1990). Godunov, Lax-Wendroff, and ENO are some of the popular names. Godunov scheme resolves well the shocks, but accuracy (of first order) is poor in smooth regions. Lax-Wendroff is of second order, but produces dangerous oscillations close to shocks. ENO schemes are good alternatives, with high order and without serious oscillations. But the price is high computational cost. Ami Harten proposed in (Harten, 1994) a simple strategy to save expensive ENO flux calculations. The basic tools come from multiresolution analysis for cell averages on uniform grids, and the principle is that wavelet coefficients can be used for the characterization of local smoothness.. Typically, only few wavelet coefficients are significant. At the finest level, they indicate discontinuity points, where ENO numerical fluxes are computed exactly. Elsewhere, cheaper fluxes can be safely used, or just interpolated from coarser scales. Different applications of this principle have been explored by several authors, see for example (G-Muller and Muller, 1998). Our scheme also uses Ami Harten's ideas. But instead of evolving the cell averages on the finest uniform level, we propose to evolve the cell averages on sparse grids associated with the significant wavelet coefficients. This means that the total number of cells is small, with big cells in smooth regions and smaller ones close to irregularities. This task requires improved new tools, which are described next.
引用
收藏
页码:497 / 503
页数:3
相关论文
共 50 条
  • [1] ADAPTIVE MULTIRESOLUTION SCHEMES FOR SHOCK COMPUTATIONS
    HARTEN, A
    JOURNAL OF COMPUTATIONAL PHYSICS, 1994, 115 (02) : 319 - 338
  • [2] A fully adaptive multiresolution scheme for image processing
    Amat, Sergio
    Donat, Rosa
    Liandrat, Jacques
    Trillo, J. Carlos
    MATHEMATICAL AND COMPUTER MODELLING, 2007, 46 (1-2) : 2 - 11
  • [3] Adaptive Multiresolution Computations Applied to Detonations
    Roussel, Olivier
    Schneider, Kai
    ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-INTERNATIONAL JOURNAL OF RESEARCH IN PHYSICAL CHEMISTRY & CHEMICAL PHYSICS, 2015, 229 (06): : 931 - 953
  • [4] Unsteady compressible flow computations using an adaptive multiresolution technique coupled with a high-order one-step shock-capturing scheme
    Tenaud, Christian
    Roussel, Olivier
    Bentaleb, Linda
    COMPUTERS & FLUIDS, 2015, 120 : 111 - 125
  • [5] APPLICATION OF GENERALIZED WAVELETS - AN ADAPTIVE MULTIRESOLUTION SCHEME
    BIHARI, BL
    HARTEN, A
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1995, 61 (03) : 275 - 321
  • [6] A conservative fully adaptive multiresolution algorithm for parabolic PDEs
    Roussel, O
    Schneider, K
    Tsigulin, A
    Bockhorn, H
    JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 188 (02) : 493 - 523
  • [7] A SHOCK INDICATOR FOR ADAPTIVE TRANSONIC FLOW COMPUTATIONS
    GOHNER, U
    WARNECKE, G
    NUMERISCHE MATHEMATIK, 1994, 66 (04) : 423 - 448
  • [8] Fully adaptive multiresolution finite volume schemes for conservation laws
    Cohen, A
    Kaber, SM
    Müller, S
    Postel, M
    MATHEMATICS OF COMPUTATION, 2003, 72 (241) : 183 - 225
  • [9] Adaptive two- and three-dimensional multiresolution computations of resistive magnetohydrodynamics
    Anna Karina Fontes Gomes
    Margarete Oliveira Domingues
    Odim Mendes
    Kai Schneider
    Advances in Computational Mathematics, 2021, 47
  • [10] Adaptive two- and three-dimensional multiresolution computations of resistive magnetohydrodynamics
    Fontes Gomes, Anna Karina
    Domingues, Margarete Oliveira
    Mendes, Odim
    Schneider, Kai
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2021, 47 (02)