THE UPPER AND LOWER BOUNDS ON NON-REAL EIGENVALUES OF INDEFINITE STURM-LIOUVILLE PROBLEMS

被引:17
作者
Qi, Jiangang [1 ]
Xie, Bing [1 ]
Chen, Shaozhu [1 ]
机构
[1] Shandong Univ, Dept Math, Weihai 264209, Peoples R China
关键词
Indefinite Sturm-Liouville problem; Krein space; non-real eigenvalue; a priori bounds; LINEAR-DIFFERENTIAL EQUATIONS; OSCILLATION; OPERATORS;
D O I
10.1090/proc/12854
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The present paper gives a priori upper and lower bounds on non-real eigenvalues of regular indefinite Sturm-Liouville problems only under the integrability conditions. More generally, a lower bound on non-real eigenvalues of the self-adjoint operator in Krein space is obtained.
引用
收藏
页码:547 / 559
页数:13
相关论文
共 19 条
[1]  
Atkinson F., 1988, P FOC RES PROGR SPEC, V1, P31
[2]   Estimates on the non-real eigenvalues of regular indefinite Sturm-Liouville problems [J].
Behrndt, Jussi ;
Chen, Shaozhu ;
Philipp, Friedrich ;
Qi, Jiangang .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2014, 144 (06) :1113-1126
[3]   Bounds on the non-real spectrum of differential operators with indefinite weights [J].
Behrndt, Jussi ;
Philipp, Friedrich ;
Trunk, Carsten .
MATHEMATISCHE ANNALEN, 2013, 357 (01) :185-213
[4]   NON-REAL EIGENVALUES OF SINGULAR INDEFINITE STURM-LIOUVILLE OPERATORS [J].
Behrndt, Jussi ;
Katatbeh, Qutaibeh ;
Trunk, Carsten .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (11) :3797-3806
[5]   Eigencurves for two-parameter Sturm-Liouville equations [J].
Binding, P ;
Volkmer, H .
SIAM REVIEW, 1996, 38 (01) :27-48
[6]   SUFFICIENT CONDITIONS FOR WEIGHTED INEQUALITIES OF SUM FORM [J].
BROWN, RC ;
HINTON, DB .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1985, 112 (02) :563-578
[7]  
CURGUS B, 1989, J DIFFER EQUATIONS, V79, P31
[8]  
FLECKINGER J, 1984, N HOLLAND MATH STUD, V92, P219, DOI DOI 10.1016/S0304-0208(08)73696-X
[9]  
Haupt O, 1915, MATH ANN, V76, P67
[10]   Indefinite Sturm-Liouville problems [J].
Kong, Q ;
Wu, H ;
Zettl, A ;
Möller, M .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2003, 133 :639-652