Proteomics Strategies to Identify SUMO Targets and Acceptor Sites: A Survey of RNA-Binding Proteins SUMOylation

被引:18
作者
Filosa, Giuseppe [1 ,2 ]
Barabino, Silvia M. L. [1 ]
Bachi, Angela [2 ]
机构
[1] Univ Milano Bicocca, Dept Biosci & Biotechnol, I-20126 Milan, Italy
[2] IFOM, FIRC, Inst Mol Oncol, I-20139 Milan, Italy
关键词
SUMOylation; Proteomics; Posttranslational modifications; Mass spectrometry; RNA-binding proteins; MASS-SPECTROMETRY; MODIFIER-1; SUMO-1; CAJAL BODIES; E3; LIGASE; HNRNP-K; IDENTIFICATION; MOTIF; NUCLEAR; LOCALIZATION; PURIFICATION;
D O I
10.1007/s12017-013-8256-8
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
SUMOylation is a protein posttranslational modification that participates in the regulation of numerous biological processes within the cells. Small ubiquitin-like modifier (SUMO) proteins are members of the ubiquitin-like protein family and, similarly to ubiquitin, are covalently linked to a lysine residue on a target protein via a multi-enzymatic cascade. To assess the specific mechanism triggered by SUMOylation, the identification of SUMO protein substrates and of the precise acceptor site to which SUMO is bound is of critical relevance. Despite hundreds of mammalian proteins have been described as targets of SUMOylation, the identification of the precise acceptor sites still represents an important analytical challenge because of the relatively low stoichiometry in vivo and the highly dynamic nature of this modification. Moreover, mass spectrometry-based identification of SUMOylated sites is hampered by the large peptide remnant of SUMO proteins that are left on the modified lysine residue upon tryptic digestion. The present review provides a survey of the strategies that have been exploited in order to enrich, purify and identify SUMOylation substrates and acceptor sites in human cells on a large-scale format. The success of the presented strategies helped to unravel the numerous activities of this modification, as it was shown by the exemplary case of the RNA-binding protein family, whose SUMOylation is here reviewed.
引用
收藏
页码:661 / 676
页数:16
相关论文
共 111 条
[1]   Next-generation proteomics: towards an integrative view of proteome dynamics [J].
Altelaar, A. F. Maarten ;
Munoz, Javier ;
Heck, Albert J. R. .
NATURE REVIEWS GENETICS, 2013, 14 (01) :35-48
[2]   SUMO modification of Sam68 enhances its ability to repress cyclin D1 expression and inhibits its ability to induce apoptosis [J].
Babic, I. ;
Cherry, E. ;
Fujita, D. J. .
ONCOGENE, 2006, 25 (36) :4955-4964
[3]   Mitotic kinase Aurora-B is regulated by SUMO-2/3 conjugation/deconjugation during mitosis [J].
Ban, Reiko ;
Nishida, Tamotsu ;
Urano, Takeshi .
GENES TO CELLS, 2011, 16 (06) :652-669
[4]   Detecting endogenous SUMO targets in mammalian cells and tissues [J].
Becker, Janina ;
Barysch, Sina V. ;
Karaca, Samir ;
Dittner, Claudia ;
Hsiao, He-Hsuan ;
Diaz, Mauricio Berriel ;
Herzig, Stephan ;
Urlaub, Henning ;
Melchior, Frauke .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2013, 20 (04) :525-+
[5]   SUMO modification regulates inactivation of the voltage-gated potassium channel Kv1.5 [J].
Benson, Mark D. ;
Li, Qiu-Ju ;
Kieckhafer, Katherine ;
Dudek, David ;
Whorton, Matthew R. ;
Sunahara, Roger K. ;
Iniguez-Lluhi, Jorge A. ;
Martens, Jeffrey R. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (06) :1805-1810
[6]   In Vivo Identification of Sumoylation Sites by a Signature Tag and Cysteine-targeted Affinity Purification [J].
Blomster, Henri A. ;
Imanishi, Susumu Y. ;
Siimes, Jenny ;
Kastu, Juha ;
Morrice, Nick A. ;
Eriksson, John E. ;
Sistonen, Lea .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2010, 285 (25) :19324-19329
[7]   Novel Proteomics Strategy Brings Insight into the Prevalence of SUMO-2 Target Sites [J].
Blomster, Henri A. ;
Hietakangas, Ville ;
Wu, Jianmin ;
Kouvonen, Petri ;
Hautaniemi, Sampsa ;
Sistonen, Lea .
MOLECULAR & CELLULAR PROTEOMICS, 2009, 8 (06) :1382-1390
[8]   A M55V polymorphism in a novel SUMO gene (SUMO-4) differentially activates heat shock transcription factors and is associated with susceptibility to type I diabetes mellitus [J].
Bohren, KM ;
Nadkarni, V ;
Song, JH ;
Gabbay, KH ;
Owerbach, D .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (26) :27233-27238
[9]   HnRNP K: One protein multiple processes [J].
Bomsztyk, K ;
Denisenko, O ;
Ostrowski, J .
BIOESSAYS, 2004, 26 (06) :629-638
[10]   Purification and identification of endogenous polySUMO conjugates [J].
Bruderer, Roland ;
Tatham, Michael H. ;
Plechanovova, Anna ;
Matic, Ivan ;
Garg, Amit K. ;
Hay, Ronald T. .
EMBO REPORTS, 2011, 12 (02) :142-148