Cohen-Macaulay modules over the algebra of planar quasi-invariants and Calogero-Moser systems

被引:2
作者
Burban, Igor [1 ]
Zheglov, Alexander [2 ]
机构
[1] Univ Paderborn, Inst Math, Warburger Str 100, D-33098 Paderborn, Germany
[2] Moscow MV Lomonosov State Univ, Fac Mech & Math, GSP-1, Moscow 119899, Russia
关键词
14B05; 14J60; 35S99; 37K10 (primary); DIFFERENTIAL-OPERATORS; RINGS;
D O I
10.1112/plms.12341
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study properties of the algebras of planar quasi-invariants. These algebras are Cohen-Macaulay and Gorenstein in codimension one. Using the technique of matrix problems, we classify all Cohen-Macaulay modules of rank one over them and determine their Picard groups. In terms of this classification, we describe the spectral modules of the planar rational Calogero-Moser systems. Finally, we elaborate the theory of the algebraic inverse scattering method, providing explicit computations of some 'isospectral deformations' of the planar rational Calogero-Moser system in the case of the split rational potential.
引用
收藏
页码:1033 / 1082
页数:50
相关论文
共 39 条
  • [1] [Anonymous], 1977, Russian Math. Surveys
  • [2] [Anonymous], 2010, GEOMETRY MODULI SPAC, DOI DOI 10.1017/CBO9780511711985
  • [3] Berest Y, 2003, DUKE MATH J, V118, P279
  • [4] Berest Y., 1998, CRM Proc. Lecture Notes., V14, P11
  • [5] Bodnarchuk L., 2006, GLOBAL ASPECTS COMPL, P83
  • [6] Bourbaki Nicolas, 2007, Algebre
  • [7] Bruns W., 1993, COHEN MACAULAY RINGS
  • [8] Burban I., 2017, MEMOIRS AM MATH SOC, V248
  • [9] Burban I., 2008, EMS Ser. Congr. Rep., P101
  • [10] Burban I., 2003, THESIS