On higher-order semilinear parabolic equations with measures as initial data

被引:0
作者
Galaktionov, VA [1 ]
机构
[1] Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England
[2] MV Keldysh Appl Math Inst, Moscow 125047, Russia
关键词
Cauchy problem; semilinear parabolic equation; Dirac mass; existence; nonexistence;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider 2mth-order (m greater than or equal to 2) semilinear parabolic equations u(t) = -(-Delta)(m) u +/-\u\(p-1)u in R-N x R+ (p > 1), with Dirac's mass delta(x) as the initial function. We show that for p < p(0) = 1 + 2m/ N, the Cauchy problem admits a solution u(x, t) which is bounded and smooth for small t > 0, while for p greater than or equal to p(0) such a local in time solution does not exist. This leads to a boundary layer phenomenon in constructing a proper solution via regular approximations.
引用
收藏
页码:193 / 205
页数:13
相关论文
共 15 条
[1]   COMPLETE BLOW-UP AFTER TMAX FOR THE SOLUTION OF A SEMILINEAR HEAT-EQUATION [J].
BARAS, P ;
COHEN, L .
JOURNAL OF FUNCTIONAL ANALYSIS, 1987, 71 (01) :142-174
[2]  
BREZIS H, 1983, J MATH PURE APPL, V62, P73
[3]  
Cui S, 2001, NONLINEAR ANAL-THEOR, V43, P293
[4]   On the necessary conditions of global existence to a quasilinear inequality in the half-space [J].
Egorov, YV ;
Galakitionov, VA ;
Kondratiev, VA ;
Pohozaev, SI .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (02) :93-98
[5]   On the asymptotics of global solutions of higher-order semilinear parabolic equations in the supercritical range [J].
Egorov, YV ;
Galaktionov, VA ;
Kondratiev, VA ;
Pohozaev, SI .
COMPTES RENDUS MATHEMATIQUE, 2002, 335 (10) :805-810
[6]  
Eidelman S.D., 1969, PARABOLIC SYSTEMS, P469
[7]   ASYMPTOTIC-BEHAVIOR OF NONLINEAR PARABOLIC EQUATIONS WITH CRITICAL EXPONENTS - A DYNAMIC-SYSTEMS APPROACH [J].
GALAKTIONOV, VA ;
VAZQUEZ, JL .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 100 (02) :435-462
[8]   Existence and blow-up for higher-order semilinear parabolic equations: Majorizing order-preserving operators [J].
Galaktionov, VA ;
Pohozaev, SI .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2002, 51 (06) :1321-1338
[9]  
Galaktionov VA, 1997, COMMUN PUR APPL MATH, V50, P1
[10]  
GALAKTIONOV VA, IN PRESS INT J MATH