Loss of the tumor suppressor LKB1 promotes metabolic reprogramming of cancer cells via HIF-1α

被引:199
作者
Faubert, Brandon [1 ,2 ]
Vincent, Emma E. [1 ,2 ]
Griss, Takla [1 ,2 ]
Samborska, Bozena [1 ,2 ]
Izreig, Said [1 ,2 ]
Svensson, Robert U. [3 ,4 ]
Mamer, Orval A. [1 ,5 ]
Avizonis, Daina [1 ,5 ]
Shackelford, David B. [6 ,7 ]
Shaw, Reuben J. [3 ,4 ]
Jones, Russell G. [1 ,2 ]
机构
[1] McGill Univ, Goodman Canc Res Ctr, Montreal, PQ H3A 1A3, Canada
[2] McGill Univ, Dept Physiol, Montreal, PQ H3A 1A3, Canada
[3] Salk Inst Biol Studies, Howard Hughes Med Inst, La Jolla, CA 92037 USA
[4] Salk Inst Biol Studies, Mol & Cell Biol Lab, La Jolla, CA 92037 USA
[5] McGill Univ, Metab Core Facil, Montreal, PQ H3A 1A3, Canada
[6] Univ Calif Los Angeles, David Geffen Sch Med, Dept Mol Pharmacol, Div Pulm & Crit Care Med, Los Angeles, CA 90095 USA
[7] David Geffen UCLA, Sch Med, Dept Med Pharmacol, Div Pulm & Crit Care Med, Los Angeles, CA 90095 USA
基金
加拿大健康研究院;
关键词
HIF-1alpha; cancer metabolism; Warburg effect; Peutz-Jeghers Syndrome; P[!text type='JS']JS[!/text; glutamine metabolism; LUNG-CANCER; HYPOXIA; GROWTH; KINASE; MTOR; ROS; CARBOXYLATION; INACTIVATION; ADAPTATION; MUTATIONS;
D O I
10.1073/pnas.1312570111
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
One of the major metabolic changes associated with cellular transformation is enhanced nutrient utilization, which supports tumor progression by fueling both energy production and providing biosynthetic intermediates for growth. The liver kinase B1 (LKB1) is a serine/threonine kinase and tumor suppressor that couples bioenergetics to cell-growth control through regulation of mammalian target of rapamycin (mTOR) activity; however, the influence of LKB1 on tumor metabolism is not well defined. Here, we show that loss of LKB1 induces a progrowth metabolic program in proliferating cells. Cells lacking LKB1 display increased glucose and glutamine uptake and utilization, which support both cellular ATP levels and increased macromolecular biosynthesis. This LKB1-dependent reprogramming of cell metabolism is dependent on the hypoxia-inducible factor-1 alpha (HIF-1 alpha), which accumulates under normoxia in LKB1-deficient cells and is antagonized by inhibition of mTOR complex I signaling. Silencing HIF-1 alpha reverses the metabolic advantages conferred by reduced LKB1 signaling and impairs the growth and survival of LKB1-deficient tumor cells under low-nutrient conditions. Together, our data implicate the tumor suppressor LKB1 as a central regulator of tumor metabolism and growth control through the regulation of HIF-1 alpha-dependent metabolic reprogramming.
引用
收藏
页码:2554 / 2559
页数:6
相关论文
共 42 条
  • [1] LKB1 somatic mutations in sporadic tumors
    Avizienyte, E
    Loukola, A
    Roth, S
    Hemminki, A
    Tarkkanen, M
    Salovaara, R
    Arola, J
    Bützow, R
    Husgafvel-Pursiainen, K
    Kokkola, A
    Järvinen, H
    Aaltonen, LA
    [J]. AMERICAN JOURNAL OF PATHOLOGY, 1999, 154 (03) : 677 - 681
  • [2] LKB1, a protein kinase regulating cell proliferation and polarity
    Boudeau, J
    Sapkota, G
    Alessi, DR
    [J]. FEBS LETTERS, 2003, 546 (01) : 159 - 165
  • [3] TSC2 regulates VEGF through mTOR-dependent and -independent pathways
    Brugarolas, JB
    Vazquez, F
    Reddy, A
    Sellers, WR
    Kaelin, WG
    [J]. CANCER CELL, 2003, 4 (02) : 147 - 158
  • [4] Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation
    Brunelle, JK
    Bell, EL
    Quesada, NM
    Vercauteren, K
    Tiranti, V
    Zeviani, M
    Scarpulla, RC
    Chandel, NS
    [J]. CELL METABOLISM, 2005, 1 (06) : 409 - 414
  • [5] Loss of Lkb1 provokes highly invasive endometrial adenocarcinomas
    Contreras, Cristina M.
    Gurumurthy, Sushma
    Haynie, J. Marshall
    Shirley, Lane J.
    Akbay, Esra A.
    Wingo, Shana N.
    Schorge, John O.
    Broaddus, Russell R.
    Wong, Kwok-Kin
    Bardeesy, Nabeel
    Castrillon, Diego H.
    [J]. CANCER RESEARCH, 2008, 68 (03) : 759 - 766
  • [6] Regulation of the TSC pathway by LKB1: evidence of a molecular link between tuberous sclerosis complex and Peutz-Jeghers syndrome
    Corradetti, MN
    Inoki, K
    Bardeesy, N
    DePinho, RA
    Guan, KL
    [J]. GENES & DEVELOPMENT, 2004, 18 (13) : 1533 - 1538
  • [7] De Bels D, 2011, NEW ENGL J MED, V365, P1845, DOI [10.1056/NEJMra1011165, 10.1056/NEJMc1110602]
  • [8] Brick by brick: metabolism and tumor cell growth
    DeBerardinis, Ralph J.
    Sayed, Nabil
    Ditsworth, Dara
    Thompson, Craig B.
    [J]. CURRENT OPINION IN GENETICS & DEVELOPMENT, 2008, 18 (01) : 54 - 61
  • [9] The biology of cancer: Metabolic reprogramming fuels cell growth and proliferation
    DeBerardinis, Ralph J.
    Lum, Julian J.
    Hatzivassiliou, Georgia
    Thompson, Craig B.
    [J]. CELL METABOLISM, 2008, 7 (01) : 11 - 20
  • [10] AMPK Is a Negative Regulator of the Warburg Effect and Suppresses Tumor Growth In Vivo
    Faubert, Brandon
    Boily, Gino
    Izreig, Said
    Griss, Takla
    Samborska, Bozena
    Dong, Zhifeng
    Dupuy, Fanny
    Chambers, Christopher
    Fuerth, Benjamin J.
    Viollet, Benoit
    Mamer, Orval A.
    Avizonis, Daina
    DeBerardinis, Ralph J.
    Siegel, Peter M.
    Jones, Russell G.
    [J]. CELL METABOLISM, 2013, 17 (01) : 113 - 124