Spin transport in graphene/transition metal dichalcogenide heterostructures

被引:145
作者
Garcia, Jose H. [1 ,2 ]
Vila, Marc [1 ,2 ,3 ]
Cummings, Aron W. [1 ,2 ]
Roche, Stephan [1 ,2 ,4 ]
机构
[1] CSIC, Catalan Inst Nanosci & Nanotechnol ICN2, Campus UAB, Barcelona 08193, Spain
[2] BIST, Campus UAB, Barcelona 08193, Spain
[3] Univ Autonoma Barcelona, Dept Phys, Campus UAB, E-08193 Barcelona, Spain
[4] ICREA, Barcelona 08010, Spain
关键词
DER-WAALS HETEROSTRUCTURES; ELECTRICAL DETECTION; BALLISTIC TRANSPORT; ORBIT INTERACTION; GRAPHENE; RELAXATION; PRECESSION; MOBILITY; SINGLE; CHARGE;
D O I
10.1039/c7cs00864c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Since its discovery, graphene has been a promising material for spintronics: its low spin-orbit coupling, negligible hyperfine interaction, and high electron mobility are obvious advantages for transporting spin information over long distances. However, such outstanding transport properties also limit the capability to engineer active spintronics, where strong spin-orbit coupling is crucial for creating and manipulating spin currents. To this end, transition metal dichalcogenides, which have larger spin-orbit coupling and good interface matching, appear to be highly complementary materials for enhancing the spin-dependent features of graphene while maintaining its superior charge transport properties. In this review, we present the theoretical framework and the experiments performed to detect and characterize the spin-orbit coupling and spin currents in graphene/transition metal dichalcogenide heterostructures. Specifically, we will concentrate on recent measurements of Hanle precession, weak antilocalization and the spin Hall effect, and provide a comprehensive theoretical description of the interconnection between these phenomena.
引用
收藏
页码:3359 / 3379
页数:21
相关论文
共 159 条
[61]   Direct coupling between charge current and spin polarization by extrinsic mechanisms in graphene [J].
Huang, Chunli ;
Chong, Y. D. ;
Cazalilla, Miguel A. .
PHYSICAL REVIEW B, 2016, 94 (08)
[62]   Spin-Orbit-Mediated Spin Relaxation in Graphene [J].
Huertas-Hernando, D. ;
Guinea, F. ;
Brataas, Arne .
PHYSICAL REVIEW LETTERS, 2009, 103 (14)
[63]   Spin-orbit coupling in curved graphene, fullerenes, nanotubes, and nanotube caps [J].
Huertas-Hernando, Daniel ;
Guinea, F. ;
Brataas, Arne .
PHYSICAL REVIEW B, 2006, 74 (15)
[64]   Revisiting the measurement of the spin relaxation time in graphene-based devices [J].
Idzuchi, H. ;
Fert, A. ;
Otani, Y. .
PHYSICAL REVIEW B, 2015, 91 (24)
[65]   Diffuse transport and spin accumulation in a Rashba two-dimensional electron gas [J].
Inoue, J ;
Bauer, GEW ;
Molenkamp, LW .
PHYSICAL REVIEW B, 2003, 67 (03)
[66]   Electrical detection of spin precession in a metallic mesoscopic spin valve [J].
Jedema, FJ ;
Heersche, HB ;
Filip, AT ;
Baselmans, JJA ;
van Wees, BJ .
NATURE, 2002, 416 (6882) :713-716
[67]   Transport study of graphene adsorbed with indium adatoms [J].
Jia, Zhenzhao ;
Yan, Baoming ;
Niu, Jingjing ;
Han, Qi ;
Zhu, Rui ;
Yu, Dapeng ;
Wu, Xiaosong .
PHYSICAL REVIEW B, 2015, 91 (08)
[68]   INTERFACIAL CHARGE-SPIN COUPLING - INJECTION AND DETECTION OF SPIN MAGNETIZATION IN METALS [J].
JOHNSON, M ;
SILSBEE, RH .
PHYSICAL REVIEW LETTERS, 1985, 55 (17) :1790-1793
[69]   Linear scaling between momentum and spin scattering in graphene [J].
Jozsa, C. ;
Maassen, T. ;
Popinciuc, M. ;
Zomer, P. J. ;
Veligura, A. ;
Jonkman, H. T. ;
van Wees, B. J. .
PHYSICAL REVIEW B, 2009, 80 (24)
[70]   Long distance spin communication in chemical vapour deposited graphene [J].
Kamalakar, M. Venkata ;
Groenveld, Christiaan ;
Dankert, Andre ;
Dash, Saroj P. .
NATURE COMMUNICATIONS, 2015, 6