Targeted transduction of CD34+ hematopoietic progenitor cells in nonpurified human mobilized peripheral blood mononuclear cells

被引:16
|
作者
Liang, Min [2 ]
Pariente, Nonia [2 ]
Morizono, Kouki [2 ]
Chen, Irvin S. Y. [1 ,2 ,3 ]
机构
[1] Univ Calif Los Angeles, Dept Microbiol Immunol & Mol Genet & Med, AIDS Inst, David Geffen Sch Med, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Microbiol Mol Genet & Immunol, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, David Geffen Sch Med, Dept Med, Los Angeles, CA 90095 USA
基金
美国国家卫生研究院;
关键词
gene therapy; targeting; lentiviral vector; hematopoietic stem cell; mobilized PBMCs; BONE-MARROW-TRANSPLANTATION; GENE-TRANSFER; POSITIVE SELECTION; IN-VIVO; STEM-CELLS; VECTOR; THERAPY; EXPRESSION; DELIVERY; INFECTION;
D O I
10.1002/jgm.1290
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background Conventional gene-therapy applications of hematopoietic stem cells (HSCs) involve purification of CD34+ progenitor cells from the mobilized peripheral blood, ex vivo transduction of the gene of interest into them, and reinfusion of the transduced CD34+ progenitor cells into patients. Eliminating the process of purification would save labor, time and money, while enhancing HSCs viability, transplantability and pluripotency. Lentiviral vectors have been widely used in gene therapy because they infect both dividing and nondividing cells and provide sustained transgene expression. One of the exceptions to this rule is quiescent primary lymphocytes, in which reverse transcription of viral DNA is not completed. Methods In the present study, we tested the possibility of targeting CD34+ progenitor cells within nonpurified human mobilized peripheral blood mononuclear cells (mPBMCs) utilizing vesicular stomatitis virus G (VSV-G) pseudotyped lentiviral vectors, based on the assumption that the CD34+ progenitor cells would be preferentially transduced. To further enhance the specificity of vector transduction, we also examined utilizing a modified Sindbis virus envelope (2.2) pseudotyped lentiviral vector, developed in our laboratory, that allows targeted transduction to specific cell receptors via antibody recognition. Results Both the VSV-G and 2.2 pseudotyped vectors achieved measurable results when they were used to target CD34+ progenitor cells in nonpurified mPBMCs. Conclusions Overall, the data obtained demonstrate the potential of ex vivo targeting of CD34+ progenitor cells without purification. Copyright (C) 2009 John Wiley & Sons, Ltd.
引用
收藏
页码:185 / 196
页数:12
相关论文
共 50 条
  • [31] Human Cytomegalovirus Enters the Primary CD34+ Hematopoietic Progenitor Cells Where It Establishes Latency by Macropinocytosis
    Lee, Jeong-Hee
    Kalejta, Robert F.
    JOURNAL OF VIROLOGY, 2019, 93 (15)
  • [32] Platelets induce differentiation of human CD34+ progenitor cells into foam cells and endothelial cells
    Daub, Karin
    Langer, Harald
    Seizer, Peter
    Stellos, Konstantinos
    May, Andreas E.
    Goyal, Pankaj
    Bigalke, Boris
    Schoenberger, Tanja
    Geisler, Tobias
    Siegel-Axel, Dorothea
    Oostendorp, Robert A. J.
    Lindemann, Stephan
    Gawaz, Meinrad
    FASEB JOURNAL, 2006, 20 (14) : 2559 - +
  • [33] Metallothionein in human immunomagnetically selected CD34+ haematopoietic progenitor cells
    Bagheri, Pegah Maghdooni
    De Ley, Marc
    CELL BIOLOGY INTERNATIONAL, 2011, 35 (01) : 39 - 44
  • [34] CD34+ hematopoietic precursors are present in human decidua and differentiate into natural killer cells upon interaction with stromal cells
    Vacca, Paola
    Vitale, Chiara
    Montaldo, Elisa
    Conte, Romana
    Cantoni, Claudia
    Fulcheri, Ezio
    Darretta, Valeria
    Moretta, Lorenzo
    Mingari, Maria Cristina
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (06) : 2402 - 2407
  • [35] Interaction of vesicular stomatitis virus-G pseudotyped retrovirus with CD34+ and CD34+CD38− hematopoietic progenitor cells
    AM Sinclair
    YP Agrawal
    E Elbar
    R Agrawal
    AD Ho
    F Levine
    Gene Therapy, 1997, 4 : 918 - 927
  • [36] Targeted gene addition in human CD34+ hematopoietic cells for correction of X-linked chronic granulomatous disease
    De Ravin, Suk See
    Reik, Andreas
    Liu, Pei-Qi
    Li, Linhong
    Wu, Xiaolin
    Su, Ling
    Raley, Castle
    Theobald, Narda
    Choi, Uimook
    Song, Alexander H.
    Chan, Andy
    Pearl, Jocelynn R.
    Paschon, David E.
    Lee, Janet
    Newcombe, Hannah
    Koontz, Sherry
    Sweeney, Colin
    Shivak, David A.
    Zarember, Kol A.
    Peshwa, Madhusudan V.
    Gregory, Philip D.
    Urnov, Fyodor D.
    Malech, Harry L.
    NATURE BIOTECHNOLOGY, 2016, 34 (04) : 424 - +
  • [37] Serum-free ex vivo expansion of CD34+ hematopoietic progenitor cells
    Möbest, D
    Mertelsmann, R
    Henschler, R
    BIOTECHNOLOGY AND BIOENGINEERING, 1998, 60 (03) : 341 - 347
  • [38] Efficient transduction and engraftment of G-CSF-mobilized peripheral blood CD34+ cells in nonhuman primates using GALV-pseudotyped gammaretroviral vectors
    Beard, Brian C.
    Mezquita, Pau
    Morris, Julia C.
    Kiem, Hans-Peter
    MOLECULAR THERAPY, 2006, 14 (02) : 212 - 217
  • [39] Prediction of CD34+ cell yield in hematopoietic cell products from children by peripheral blood CD34+ cell counts
    Rujkijyanont, Piya
    Hipps, John
    Gan, Kwan
    Yang, Jie
    Wang, Chong
    Geiger, Terrence L.
    Eldridge, Paul W.
    Leung, Wing
    CYTOTHERAPY, 2012, 14 (04) : 473 - 482
  • [40] Wild-Type Measles Virus Interferes with Short-Term Engraftment of Human CD34+ Hematopoietic Progenitor Cells
    Boussaad, Ibrahim
    Varagnolo, Linda
    Hornich, Veronika
    Rieger, Lorenz
    Krockenberger, Matthias
    Stuehmer, Thorsten
    Kranzfelder, Dietmar
    Mueller, Albrecht M.
    Schneider-Schaulies, Sibylle
    JOURNAL OF VIROLOGY, 2011, 85 (15) : 7710 - 7718