On Total Variation Minimization and Surface Evolution Using Parametric Maximum Flows

被引:110
作者
Chambolle, Antonin [1 ]
Darbon, Jerome [2 ]
机构
[1] Ecole Polytech, CNRS, CMAP, F-91128 Palaiseau, France
[2] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90024 USA
关键词
Crystalline and anisotropic mean curvature flow; Variational approaches; Total variation; Submodular functions; Max-flow/min-cut; Parametric max-flow algorithms; MEAN-CURVATURE FLOW; IMPLICIT TIME DISCRETIZATION; ENERGY MINIMIZATION; ALGORITHM; SEGMENTATION;
D O I
10.1007/s11263-009-0238-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In a recent paper Boykov et al. (LNCS, Vol. 3953, pp. 409-422, 2006) propose an approach for computing curve and surface evolution using a variational approach and the geo-cuts method of Boykov and Kolmogorov (International conference on computer vision, pp. 26-33, 2003). We recall in this paper how this is related to well-known approaches for mean curvature motion, introduced by Almgren et al. (SIAM Journal on Control and Optimization 31(2):387-438, 1993) and Luckhaus and Sturzenhecker (Calculus of Variations and Partial Differential Equations 3(2):253-271, 1995), and show how the corresponding problems can be solved with sub-pixel accuracy using Parametric Maximum Flow techniques. This provides interesting algorithms for computing crystalline curvature motion, possibly with a forcing term.
引用
收藏
页码:288 / 307
页数:20
相关论文
共 61 条
[1]  
Ahuja RK, 1995, NETWORK FLOWS THEORY
[2]   Total variation regularization for image denoising, I. Geometric theory [J].
Allard, William K. .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2007, 39 (04) :1150-1190
[3]   CURVATURE-DRIVEN FLOWS - A VARIATIONAL APPROACH [J].
ALMGREN, F ;
TAYLOR, JE ;
WANG, L .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1993, 31 (02) :387-437
[4]   VARIATIONAL ALGORITHMS AND PATTERN-FORMATION IN DENDRITIC SOLIDIFICATION [J].
ALMGREN, R .
JOURNAL OF COMPUTATIONAL PHYSICS, 1993, 106 (02) :337-354
[5]   A characterization of convex calibrable sets in IRN [J].
Alter, F ;
Caselles, V ;
Chambolle, A .
MATHEMATISCHE ANNALEN, 2005, 332 (02) :329-366
[6]  
[Anonymous], 200776 CORE CATH U L
[7]  
[Anonymous], 1996, PRINCETON MATH SER
[8]  
Babenko M, 2007, LECT NOTES COMPUT SC, V4525, P256
[9]   A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems [J].
Beck, Amir ;
Teboulle, Marc .
SIAM JOURNAL ON IMAGING SCIENCES, 2009, 2 (01) :183-202
[10]   Crystalline mean curvature flow of convex sets [J].
Bellettini, G ;
Caselles, V ;
Chambolle, A ;
Novaga, M .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2006, 179 (01) :109-152