Efficiency enhancement of inverted organic solar cells by introducing PFDTBT quantum dots into PCDTBT:PC71BM active layer

被引:14
作者
Liu, Chunyu [1 ]
Guo, Wenbin [1 ]
Jiang, Huimin [1 ]
Shen, Liang [1 ]
Ruan, Shengping [2 ]
Yan, Dawei [3 ]
机构
[1] Jilin Univ, State Key Lab Integrated Optoelect, Changchun 130012, Peoples R China
[2] Jilin Univ, Coll Elect Sci & Engn, Changchun 130012, Peoples R China
[3] CAEP, Res Ctr Laser Fus, Mianyang 621900, Peoples R China
关键词
PFDTBT quantum dots; Down-conversion; Charge transport property; POLYMER DOTS; TANDEM; PERFORMANCE; NANOPARTICLES; COPOLYMER; SPECTRUM; ACCEPTOR; DENSITY;
D O I
10.1016/j.orgel.2014.07.034
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Poly{[2,7-(9-(20-ethylhexyl)-9-hexyl-fluorene])-alt-[5,50-(40,70-di-2-thienyl-20,10,30-benzothid-iazole)]} (PFDTBT) quantum dots (QDs) is synthesized by a facile approach and doped into organic solar cells (OSCs). The dependence of device performance on PFDTBT QDs in the blend film is investigated. The results show that short-circuit current density (J(sc)) is apparently enhanced while corresponding open-circuit voltage maintained, leading to an increase in power conversion efficiency (PCE). Maximum PCE of 6.81% is obtained, corresponding to a 23.8% enhancement compared with the undoped device. PFDTBT QDs can act as two kinds of role for improvement of OSCs' performance: one is improving the utilization ratio of ultraviolet light; the other is effectively improving charge transport property. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:2632 / 2638
页数:7
相关论文
共 40 条
[1]   Optimizing the organic solar cell efficiency: Role of the active layer thickness [J].
Apaydin, Dogukan Hazar ;
Yildiz, Dilber Esra ;
Cirpan, Ali ;
Toppare, Levent .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2013, 113 :100-105
[2]   Influence of some design parameters on the efficiency of solar cells with down-conversion and down shifting of high-energy photons [J].
Badescu, Viorel ;
De Vos, Alexis .
JOURNAL OF APPLIED PHYSICS, 2007, 102 (07)
[3]   Analysis of tandem solar cell efficiencies under AM1.5G spectrum using a rapid flux calculation method [J].
Bremner, S. P. ;
Levy, M. Y. ;
Honsberg, C. B. .
PROGRESS IN PHOTOVOLTAICS, 2008, 16 (03) :225-233
[4]   The role of the double peaked absorption spectrum in the efficiency of solar cells based on donor-acceptor-donor copolymers [J].
Canestraro, Carla D. ;
Rodrigues, Paula C. ;
Marchiori, Cleber F. N. ;
Schneider, Camila B. ;
Akcelrud, Leni ;
Koehler, Marlus ;
Roman, Lucimara S. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2011, 95 (08) :2287-2294
[5]   Exceeding the limit of plasmonic light trapping in textured screen-printed solar cells using Al nanoparticles and wrinkle-like graphene sheets [J].
Chen, Xi ;
Jia, Baohua ;
Zhang, Yinan ;
Gu, Min .
LIGHT-SCIENCE & APPLICATIONS, 2013, 2 :e92-e92
[6]   Enhanced near-infrared response of a-Si:H solar cells with β-NaYF4:Yb3+ (18%), Er3+ (2%) upconversion phosphors [J].
de Wild, J. ;
Rath, J. K. ;
Meijerink, A. ;
van Sark, W. G. J. H. M. ;
Schropp, R. E. I. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2010, 94 (12) :2395-2398
[7]  
Dou LT, 2012, NAT PHOTONICS, V6, P180, DOI [10.1038/nphoton.2011.356, 10.1038/NPHOTON.2011.356]
[8]   Optically monitoring and controlling nanoscale topography during semiconductor etching [J].
Edwards, Chris ;
Arbabi, Amir ;
Popescu, Gabriel ;
Goddard, Lynford L. .
LIGHT-SCIENCE & APPLICATIONS, 2012, 1 :e30-e30
[9]   Conjugated Block Copolymer Photovoltaics with near 3% Efficiency through Microphase Separation [J].
Guo, Changhe ;
Lin, Yen-Hao ;
Witman, Matthew D. ;
Smith, Kendall A. ;
Wang, Cheng ;
Hexemer, Alexander ;
Strzalka, Joseph ;
Gomez, Enrique D. ;
Verduzco, Rafael .
NANO LETTERS, 2013, 13 (06) :2957-2963
[10]   Efficiency enhancement of inverted polymer solar cells by doping NaYF4:Yb3+, Er3+ nanocomposites in PCDTBT:PCBM active layer [J].
Guo, Wenbin ;
Zheng, Kezhi ;
Xie, Wenfa ;
Sun, Lu ;
Shen, Liang ;
Liu, Chunyu ;
He, Yeyuan ;
Zhang, Zhihui .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2014, 124 :126-132