Experimental Realization of Nonadiabatic Holonomic Single-Qubit Quantum Gates with Optimal Control in a Trapped Ion

被引:55
作者
Ai, Ming-Zhong [1 ,2 ]
Li, Sai [3 ,4 ]
Hou, Zhibo [1 ,2 ]
He, Ran [1 ,2 ]
Qian, Zhong-Hua [1 ,2 ]
Xue, Zheng-Yuan [3 ,4 ,5 ]
Cui, Jin-Ming [1 ,2 ]
Huang, Yun-Feng [1 ,2 ]
Li, Chuan-Feng [1 ,2 ]
Guo, Guang-Can [1 ,2 ]
机构
[1] Univ Sci & Technol China, CAS Key Lab Quantum Informat, Hefei 230026, Peoples R China
[2] Univ Sci & Technol China, CAS Ctr Excellence Quantum Informat & Quantum Phy, Hefei 230026, Peoples R China
[3] South China Normal Univ, Guangdong Prov Key Lab Quantum Engn & Quantum Mat, Guangzhou 510006, Peoples R China
[4] South China Normal Univ, Sch Phys & Telecommun Engn, Guangzhou 510006, Peoples R China
[5] South China Normal Univ, Frontier Res Inst Phys, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
GEOMETRIC SPIN; DYNAMICS;
D O I
10.1103/PhysRevApplied.14.054062
中图分类号
O59 [应用物理学];
学科分类号
摘要
Quantum computation with quantum gates induced by geometric phases is regarded as a promising strategy in fault-tolerant quantum computation, owing to its robustness against operational noise. However, because of the parametric restrictions in previous schemes, the main robust advantage of holonomic quantum gates is reduced. Here, we experimentally demonstrate a solution scheme, obtaining nonadiabatic holonomic single-qubit quantum gates with optimal control in a trapped Yb-171(+) ion based on a three-level system with resonant driving, which also has the advantages of rapid evolution and convenient implementation. Compared with previous geometric gates and conventional dynamical gates, the superiority of our scheme is that it is more robust against control amplitude errors, which is confirmed by the gate infidelity as measured by both quantum-process tomography and random benchmarking methods. In addition, we outline how nontrivial two-qubit holonomic gates can also be realized using currently available experimental technology. Thus, our experiment confirms the feasibility of this robust and fast holonomic quantum-computation strategy.
引用
收藏
页数:8
相关论文
共 51 条
[1]   Experimental realization of non-Abelian non-adiabatic geometric gates [J].
Abdumalikov, A. A., Jr. ;
Fink, J. M. ;
Juliusson, K. ;
Pechal, M. ;
Berger, S. ;
Wallraff, A. ;
Filipp, S. .
NATURE, 2013, 496 (7446) :482-485
[2]   PHASE-CHANGE DURING A CYCLIC QUANTUM EVOLUTION [J].
AHARONOV, Y ;
ANANDAN, J .
PHYSICAL REVIEW LETTERS, 1987, 58 (16) :1593-1596
[3]   Room temperature high-fidelity holonomic single-qubit gate on a solid-state spin [J].
Arroyo-Camejo, Silvia ;
Lazariev, Andrii ;
Hell, Stefan W. ;
Balasubramanian, Gopalakrishnan .
NATURE COMMUNICATIONS, 2014, 5
[5]   Experimental Trapped-ion Quantum Simulation of the Kibble-Zurek dynamics in momentum space [J].
Cui, Jin-Ming ;
Huang, Yun-Feng ;
Wang, Zhao ;
Cao, Dong-Yang ;
Wang, Jian ;
Lv, Wei-Min ;
Luo, Le ;
del Campo, Adolfo ;
Han, Yong-Jian ;
Li, Chuan-Feng ;
Guo, Guang-Can .
SCIENTIFIC REPORTS, 2016, 6
[6]   Robust Quantum Control by a Single-Shot Shaped Pulse [J].
Daems, D. ;
Ruschhaupt, A. ;
Sugny, D. ;
Guerin, S. .
PHYSICAL REVIEW LETTERS, 2013, 111 (05)
[7]   Experimental state control by fast non-Abelian holonomic gates with a superconducting qutrit [J].
Danilin, S. ;
Vepsalainen, A. ;
Paraoanu, G. S. .
PHYSICA SCRIPTA, 2018, 93 (05)
[8]   Geometric manipulation of trapped ions for quantum computation [J].
Duan, LM ;
Cirac, JI ;
Zoller, P .
SCIENCE, 2001, 292 (5522) :1695-1697
[9]   Design and characterization of a compact magnetic shield for ultracold atomic gas experiments [J].
Farolfi, A. ;
Trypogeorgos, D. ;
Colzi, G. ;
Fava, E. ;
Lamporesi, G. ;
Ferrari, G. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2019, 90 (11)
[10]   Experimental Realization of Nonadiabatic Holonomic Quantum Computation [J].
Feng, Guanru ;
Xu, Guofu ;
Long, Guilu .
PHYSICAL REVIEW LETTERS, 2013, 110 (19)