Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy

被引:379
作者
Fan, Fengjia [1 ]
Voznyy, Oleksandr [1 ]
Sabatini, Randy P. [1 ]
Bicanic, Kristopher T. [1 ]
Adachi, Michael M. [1 ,7 ]
McBride, James R. [2 ]
Reid, Kemar R. [2 ]
Park, Young-Shin [3 ,4 ]
Li, Xiyan [1 ]
Jain, Ankit [1 ]
Quintero-Bermudez, Rafael [1 ]
Saravanapavanantham, Mayuran [1 ]
Liu, Min [1 ]
Korkusinski, Marek [5 ]
Hawrylak, Pawel [6 ]
Klimov, Victor I. [3 ]
Rosenthal, Sandra J. [2 ]
Hoogland, Sjoerd [1 ]
Sargent, Edward H. [1 ]
机构
[1] Univ Toronto, Dept Elect & Comp Engn, 10 Kings Coll Rd, Toronto, ON M5S 3G4, Canada
[2] Vanderbilt Univ, Vanderbilt Inst Nanoscale Sci & Engn, 221 Kirkland Hall, Nashville, TN 37235 USA
[3] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA
[4] Univ New Mexico, Ctr High Technol Mat, Albuquerque, NM 87131 USA
[5] CNR, Emerging Technol Div, Secur & Disrupt Technol, Ottawa, ON K1A 0R6, Canada
[6] Univ Ottawa, Dept Phys, Ottawa, ON K1A 0R6, Canada
[7] Simon Fraser Univ, Sch Engn Sci, 8888 Univ Dr Burnaby, Burnaby, BC V5A IS6, Canada
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会; 加拿大创新基金会;
关键词
AUGER RECOMBINATION; STIMULATED-EMISSION; SHELL NANOCRYSTALS; OPTICAL GAIN; CDSE; THRESHOLD; EXCITON; SEMICONDUCTORS; SURFACE; PHOTOLUMINESCENCE;
D O I
10.1038/nature21424
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Colloidal quantum dots (CQDs) feature a low degeneracy of electronic states at the band edges compared with the corresponding bulk material(1), as well as a narrow emission linewidth(2,3). Unfortunately for potential laser applications, this degeneracy is incompletely lifted in the valence band, spreading the hole population among several states at room temperature(4-6). This leads to increased optical gain thresholds, demanding high photoexcitation levels to achieve population inversion (more electrons in excited states than in ground states-the condition for optical gain). This, in turn, increases Auger recombination losses(7), limiting the gain lifetime to sub-nanoseconds and preventing steady laser action(8,9). State degeneracy also broadens the photoluminescence linewidth at the single-particle level(10). Here we demonstrate a way to decrease the band-edge degeneracy and single-dot photoluminescence linewidth in CQDs by means of uniform biaxial strain. We have developed a synthetic strategy that we term facet-selective epitaxy: we first switch off, and then switch on, shell growth on the (0001) facet of wurtzite CdSe cores, producing asymmetric compressive shells that create built-in biaxial strain, while still maintaining excellent surface passivation (preventing defect formation, which otherwise would cause non-radiative recombination losses). Our synthesis spreads the excitonic fine structure uniformly and sufficiently broadly that it prevents valence-band-edge states from being thermally depopulated. We thereby reduce the optical gain threshold and demonstrate continuous-wave lasing from CQD solids, expanding the library of solution-processed materials(11,12) that may be capable of continuous-wave lasing. The individual CQDs exhibit an ultranarrow single-dot linewidth, and we successfully propagate this into the ensemble of CQDs.
引用
收藏
页码:75 / +
页数:18
相关论文
共 49 条
[11]   Core/Shell Quantum Dot Based Luminescent Solar Concentrators with Reduced Reabsorption and Enhanced Efficiency [J].
Coropceanu, Igor ;
Bawendi, Moungi G. .
NANO LETTERS, 2014, 14 (07) :4097-4101
[12]  
Cramer C. J., 2013, ESSENTIALS COMPUTATI
[13]   Evolution of the Single-Nanocrystal Photoluminescence Linewidth with Size and Shell: Implications for Exciton-Phonon Coupling and the Optimization of Spectral Linewidths [J].
Cui, Jian ;
Beyler, Andrew P. ;
Coropceanu, Igor ;
Cleary, Liam ;
Avila, Thomas R. ;
Chen, Yue ;
Cordero, Jose M. ;
Heathcote, S. Leigh ;
Harris, Daniel K. ;
Chen, Ou ;
Cao, Jianshu ;
Bawendi, Moungi G. .
NANO LETTERS, 2016, 16 (01) :289-296
[14]  
Cui J, 2013, NAT CHEM, V5, P602, DOI [10.1038/NCHEM.1654, 10.1038/nchem.1654]
[15]   Solution-processed, high-performance light-emitting diodes based on quantum dots [J].
Dai, Xingliang ;
Zhang, Zhenxing ;
Jin, Yizheng ;
Niu, Yuan ;
Cao, Hujia ;
Liang, Xiaoyong ;
Chen, Liwei ;
Wang, Jianpu ;
Peng, Xiaogang .
NATURE, 2014, 515 (7525) :96-99
[16]  
Dang C, 2012, NAT NANOTECHNOL, V7, P335, DOI [10.1038/nnano.2012.61, 10.1038/NNANO.2012.61]
[17]   Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: Dark and bright exciton states [J].
Efros, AL ;
Rosen, M ;
Kuno, M ;
Nirmal, M ;
Norris, DJ ;
Bawendi, M .
PHYSICAL REVIEW B, 1996, 54 (07) :4843-4856
[18]   Many-body pseudopotential theory of excitons in InP and CdSe quantum dots [J].
Franceschetti, A ;
Fu, H ;
Wang, LW ;
Zunger, A .
PHYSICAL REVIEW B, 1999, 60 (03) :1819-1829
[19]  
Grim JQ, 2014, NAT NANOTECHNOL, V9, P891, DOI [10.1038/NNANO.2014.213, 10.1038/nnano.2014.213]
[20]   Nanosecond colloidal quantum dot lasers for sensing [J].
Guilhabert, B. ;
Foucher, C. ;
Haughey, A-M. ;
Mutlugun, E. ;
Gao, Y. ;
Herrnsdorf, J. ;
Sun, H. D. ;
Demir, H. V. ;
Dawson, M. D. ;
Laurand, N. .
OPTICS EXPRESS, 2014, 22 (06) :7308-7319