Counting algebraic integers of fixed degree and bounded height

被引:12
作者
Barroero, Fabrizio [1 ]
机构
[1] Graz Univ Technol, Inst Math A, A-8010 Graz, Austria
来源
MONATSHEFTE FUR MATHEMATIK | 2014年 / 175卷 / 01期
关键词
Heights; Algebraic integers; Counting; THEOREM;
D O I
10.1007/s00605-013-0599-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let be a number field. For , we give an asymptotic formula for the number of algebraic integers of absolute Weil height bounded by and fixed degree over .
引用
收藏
页码:25 / 41
页数:17
相关论文
共 16 条
[1]   Counting Lattice Points and O-Minimal Structures [J].
Barroero, Fabrizio ;
Widmer, Martin .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2014, 2014 (18) :4932-4957
[2]  
BIERSTONE E, 1988, PUBL MATH-PARIS, P5
[3]  
Bombieri E., 2006, HEIGHTS DIOPHANTINE, V4
[4]  
Chern SJ, 2001, J REINE ANGEW MATH, V540, P1
[5]  
Davenport H., 1951, J. London Math. Soc., Vs1-26, P179
[6]  
Gao X, 1995, THESIS U COLORADO CO
[7]  
Lang S., 1983, Fundamentals of Diophantine geometry, DOI 10.1007/978-1-4757-1810-2
[9]   Counting algebraic numbers with large height II [J].
Masser, David ;
Vaaler, Jeffrey D. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 359 (01) :427-445
[10]  
NORTHCOTT DG, 1949, P CAMB PHILOS SOC, V45, P502