Systematic scale-setting to all orders: The principle of maximum conformality and commensurate scale relations

被引:134
作者
Brodsky, Stanley J. [1 ]
Mojaza, Matin [1 ,2 ]
Wu, Xing-Gang [3 ]
机构
[1] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94039 USA
[2] Univ Southern Denmark, Danish Inst Adv Studies, Origins CP3, DK-5230 Odense, Denmark
[3] Chongqing Univ, Dept Phys, Chongqing 401331, Peoples R China
来源
PHYSICAL REVIEW D | 2014年 / 89卷 / 01期
基金
新加坡国家研究基金会;
关键词
STRONG-COUPLING-CONSTANT; QUANTUM-CHROMODYNAMIC CORRECTIONS; TOTAL CROSS-SECTION; BJORKEN SUM-RULE; INELASTIC-SCATTERING; MOMENTUM FLOW; RENORMALIZATION; QCD; ANNIHILATION; ELECTROPRODUCTION;
D O I
10.1103/PhysRevD.89.014027
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present in detail a new systematic method which can be used to automatically eliminate the renormalization scheme and scale ambiguities in perturbative QCD predictions at all orders. We show that all of the nonconformal beta-dependent terms in a QCD perturbative series can be readily identified by generalizing the conventional renormalization schemes based on dimensional regularization. We then demonstrate that the nonconformal series of pQCD at any order can be resummed systematically into the scale of the QCD coupling in a unique and unambiguous way due to a special degeneracy of the beta terms in the series. The resummation follows from the principal of maximum conformality (PMC) and assigns a unique scale for the running coupling at each perturbative order. The final result is independent of the initial choices of renormalization scheme and scale, in accordance with the principles of the renormalization group, and thus eliminates an unnecessary source of systematic error in physical predictions. We exhibit several examples known to order alpha(4)(s); i.e. (i) the electron-positron annihilation into hadrons, (ii) the taulepton decay to hadrons, (iii) the Bjorken and Gross-Llewellyn Smith (GLS) sum rules, and (iv) the static quark potential. We show that the final series of the first three cases are all given in terms of the anomalous dimension of the photon field in SU(N), in accordance with conformality, and with all nonconformal properties encoded in the running coupling. The final expressions for the Bjorken and GLS sum rules directly lead to the generalized Crewther relations, exposing another relevant feature of conformality. The static quark potential shows that PMC scale-setting in the Abelian limit is to all orders consistent with QED scale-setting. Finally, we demonstrate that the method applies to any renormalization scheme and can be used to derive commensurate scale relations between measurable effective charges, which provide nontrivial tests of QCD to high precision. This work extends Brodsky-Lepage-Mackenzie (BLM) scale-setting to any perturbative order, with no ambiguities in identifying beta terms in pQCD, demonstrating that BLM scale-setting follows from a principle of maximum conformality.
引用
收藏
页数:18
相关论文
共 82 条
[1]   Measurement of the strong coupling constant αs and the vector and axial-vector spectral functions in hadronic tau decays [J].
Ackerstaff, K ;
Alexander, G ;
Allison, J ;
Altekamp, N ;
Anderson, KJ ;
Anderson, S ;
Arcelli, S ;
Asai, S ;
Ashby, SF ;
Axen, D ;
Azuelos, G ;
Ball, AH ;
Barberio, E ;
Barlow, RJ ;
Bartoldus, R ;
Batley, JR ;
Baumann, S ;
Bechtluft, J ;
Behnke, T ;
Bell, KW ;
Bella, G ;
Bentvelsen, S ;
Bethke, S ;
Betts, S ;
Biebel, O ;
Biguzzi, A ;
Bird, SD ;
Blobel, V ;
Bloodworth, IJ ;
Bobinski, M ;
Bock, P ;
Böhme, J ;
Boutemeur, M ;
Braibant, S ;
Bright-Thomas, P ;
Brown, RM ;
Burckhart, HJ ;
Burgard, C ;
Bürgin, R ;
Capiluppi, P ;
Carnegie, RK ;
Carter, AA ;
Carter, JR ;
Chang, CY ;
Charlton, DG ;
Chrisman, D ;
Ciocca, C ;
Clarke, PEL ;
Clay, E ;
Cohen, I .
EUROPEAN PHYSICAL JOURNAL C, 1999, 7 (04) :571-593
[2]   SOME SIMPLE VACUUM-POLARIZATION PHENOMENOLOGY - E+E- -] HADRONS - MUONIC-ATOM X-RAY DISCREPANCY AND GMU-2 [J].
ADLER, SL .
PHYSICAL REVIEW D, 1974, 10 (11) :3714-3728
[3]   Measurement of the total cross section for e+e-→hadrons at √s=10.52 GeV [J].
Ammar, R ;
Baringer, P ;
Bean, A ;
Besson, D ;
Coppage, D ;
Darling, C ;
Davis, R ;
Hancock, N ;
Kotov, S ;
Kravchenko, I ;
Kwak, N ;
Anderson, S ;
Kubota, Y ;
Lattery, M ;
Lee, SJ ;
O'Neill, JJ ;
Patton, S ;
Poling, R ;
Riehle, T ;
Savinov, V ;
Smith, A ;
Alam, MS ;
Athar, SB ;
Ling, Z ;
Mahmood, AH ;
Severini, H ;
Timm, S ;
Wappler, F ;
Anastassov, A ;
Blinov, S ;
Duboscq, JE ;
Fisher, KD ;
Fujino, D ;
Gan, KK ;
Hart, T ;
Honscheid, K ;
Kagan, H ;
Kass, R ;
Lee, J ;
Spencer, MB ;
Sung, M ;
Undrus, A ;
Wanke, R ;
Wolf, A ;
Zoeller, MM ;
Nemati, B ;
Richichi, SJ ;
Ross, WR ;
Skubic, P ;
Wood, M .
PHYSICAL REVIEW D, 1998, 57 (03) :1350-1358
[4]   Static QCD Potential at Three-Loop Order [J].
Anzai, C. ;
Kiyo, Y. ;
Sumino, Y. .
PHYSICAL REVIEW LETTERS, 2010, 104 (11)
[5]   STATIC POTENTIAL IN QUANTUM CHROMODYNAMICS [J].
APPELQUIST, T ;
DINE, M ;
MUZINICH, IJ .
PHYSICS LETTERS B, 1977, 69 (02) :231-236
[6]   Order αs4 QCD corrections to Z and τ decays [J].
Baikov, P. A. ;
Chetyrkin, K. G. ;
Kuehn, J. H. .
PHYSICAL REVIEW LETTERS, 2008, 101 (01)
[7]   Adler function, sum rules and Crewther relation of order O(αs4): The singlet case [J].
Baikov, P. A. ;
Chetyrkin, K. G. ;
Kuehn, J. H. ;
Rittinger, J. .
PHYSICS LETTERS B, 2012, 714 (01) :62-65
[8]  
Baikov PA, 2012, J HIGH ENERGY PHYS, DOI 10.1007/JHEP07(2012)017
[9]   Adler Function, Bjorken Sum Rule, and the Crewther Relation to Order αs4 in a General Gauge Theory [J].
Baikov, P. A. ;
Chetyrkin, K. G. ;
Kuehn, J. H. .
PHYSICAL REVIEW LETTERS, 2010, 104 (13)
[10]   RESUMMATION OF (BETA-0-ALPHA(S))(N) CORRECTIONS IN QCD - TECHNIQUES AND APPLICATIONS TO THE TAU-HADRONIC WIDTH AND THE HEAVY-QUARK POLE MASS [J].
BALL, P ;
BENEKE, M ;
BRAUN, VM .
NUCLEAR PHYSICS B, 1995, 452 (03) :563-625