Derivation of the Cubic NLS and Gross-Pitaevskii Hierarchy from Manybody Dynamics in d=3 Based on Spacetime Norms

被引:55
作者
Chen, Thomas [1 ]
Pavlovic, Natasa [1 ]
机构
[1] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
来源
ANNALES HENRI POINCARE | 2014年 / 15卷 / 03期
基金
美国国家科学基金会;
关键词
MEAN-FIELD-LIMIT; NONLINEAR SCHRODINGER-EQUATION; BOSE-EINSTEIN CONDENSATION; CLASSICAL-LIMIT;
D O I
10.1007/s00023-013-0248-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We derive the defocusing cubic Gross-Pitaevskii (GP) hierarchy in dimension d = 3, from an N-body Schrodinger equation describing a gas of interacting bosons in the GP scaling, in the limit N -> a. The main result of this paper is the proof of convergence of the corresponding BBGKY hierarchy to a GP hierarchy in the spaces introduced in our previous work on the well-posedness of the Cauchy problem for GP hierarchies (Chen and PavloviA double dagger in Discr Contin Dyn Syst 27(2):715-739, 2010; http://arxiv.org/abs/0906.2984; Proc Am Math Soc 141:279-293, 2013), which are inspired by the solution spaces based on space-time norms introduced by Klainerman and Machedon (Comm Math Phys 279(1):169-185, 2008). We note that in d = 3, this has been a well-known open problem in the field. While our results do not assume factorization of the solutions, consideration of factorized solutions yields a new derivation of the cubic, defocusing nonlinear Schrodinger equation (NLS) in d = 3.
引用
收藏
页码:543 / 588
页数:46
相关论文
共 34 条
[21]   On the Mean-Field Limit of Bosons with Coulomb Two-Body Interaction [J].
Froehlich, Juerg ;
Knowles, Antti ;
Schwarz, Simon .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 288 (03) :1023-1059
[22]   Second-Order Corrections to Mean Field Evolution of Weakly Interacting Bosons. I. [J].
Grillakis, Manoussos G. ;
Machedon, Matei ;
Margetis, Dionisios .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 294 (01) :273-301
[23]   A PRIORI ESTIMATES FOR MANY-BODY HAMILTONIAN EVOLUTION OF INTERACTING BOSON SYSTEM [J].
Grillakis, Manoussos G. ;
Margetis, Dionisios .
JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2008, 5 (04) :857-883
[24]   CLASSICAL LIMIT FOR QUANTUM-MECHANICAL CORRELATION-FUNCTIONS [J].
HEPP, K .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1974, 35 (04) :265-277
[25]  
Kirkpatrick K, 2011, AM J MATH, V133, P91
[26]   On the uniqueness of solutions to the gross-pitaevskii hierarchy [J].
Klainerman, Sergiu ;
Machedon, Matei .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 279 (01) :169-185
[27]  
Lieb E.H., 2005, The Mathematics of the Bose Gas and Its Condensation, V34
[28]   Proof of Bose-Einstein condensation for dilute trapped gases [J].
Lieb, EH ;
Seiringer, R .
PHYSICAL REVIEW LETTERS, 2002, 88 (17) :4-170409
[29]   A rigorous derivation of the Gross-Pitaevskii energy functional for a two-dimensional bose gas [J].
Lieb, EH ;
Seiringer, R ;
Yngvason, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 224 (01) :17-31
[30]   A Simple Derivation of Mean Field Limits for Quantum Systems [J].
Pickl, Peter .
LETTERS IN MATHEMATICAL PHYSICS, 2011, 97 (02) :151-164