On linear birth-and-death processes in a random environment

被引:24
作者
Bacaer, Nicolas [1 ,2 ]
Ed-Darraz, Abdelkarim [1 ,2 ,3 ]
机构
[1] IRD, Bondy, France
[2] Univ Paris 06, UMMISCO, UMI209, Bondy, France
[3] Cadi Ayyad Univ, Dept Math, Marrakech, Morocco
关键词
Random environment; Birth-and-death process; Extinction probability; Basic reproduction number; BRANCHING-PROCESSES; LYAPUNOV EXPONENTS; EPIDEMIC; POPULATION;
D O I
10.1007/s00285-013-0696-0
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We study the probability of extinction for single-type and multi-type continuous-time linear birth-and-death processes in a finite Markovian environment. The probability of extinction is equal to 1 almost surely if and only if the basic reproduction number is , the key point being to identify a suitable definition of for such a result to hold.
引用
收藏
页码:73 / 90
页数:18
相关论文
共 31 条
[1]  
[Anonymous], 1972, BRANCHING PROCESSES
[2]   LYAPUNOV EXPONENTS - A SURVEY [J].
ARNOLD, L ;
WIHSTUTZ, V .
LECTURE NOTES IN MATHEMATICS, 1986, 1186 :1-26
[3]   LYAPUNOV EXPONENTS AND ROTATION NUMBER OF TWO-DIMENSIONAL SYSTEMS WITH TELEGRAPHIC NOISE [J].
ARNOLD, L ;
KLOEDEN, P .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1989, 49 (04) :1242-1274
[4]  
Arnold L, 1998, Random dynamical systems
[5]   Stochastic epidemic models with random environment: quasi-stationarity, extinction and final size [J].
Artalejo, J. R. ;
Economou, A. ;
Lopez-Herrero, M. J. .
JOURNAL OF MATHEMATICAL BIOLOGY, 2013, 67 (04) :799-831
[6]   BRANCHING PROCESSES WITH RANDOM ENVIRONMENTS .1. EXTINCTION PROBABILITIES [J].
ATHREYA, KB ;
KARLIN, S .
ANNALS OF MATHEMATICAL STATISTICS, 1971, 42 (05) :1499-+
[7]   The epidemic threshold of vector-borne diseases with seasonality [J].
Bacaer, Nicolas ;
Guernaoui, Souad .
JOURNAL OF MATHEMATICAL BIOLOGY, 2006, 53 (03) :421-436
[8]   On the probability of extinction in a periodic environment [J].
Bacaer, Nicolas ;
Dads, El Hadi Ait .
JOURNAL OF MATHEMATICAL BIOLOGY, 2014, 68 (03) :533-548
[9]   On the basic reproduction number in a random environment [J].
Bacaer, Nicolas ;
Khaladi, Mohamed .
JOURNAL OF MATHEMATICAL BIOLOGY, 2013, 67 (6-7) :1729-1739
[10]   STRONG APPROXIMATIONS FOR EPIDEMIC MODELS [J].
BALL, F ;
DONNELLY, P .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1995, 55 (01) :1-21