Gold-silver nanocomposite-functionalized graphene based electrochemiluminescence immunosensor using graphene quantum dots coated porous PtPd nanochains as labels

被引:45
作者
Yang, Hongmei [1 ]
Liu, Weiyan [1 ]
Ma, Chao [1 ]
Zhang, Yan [1 ]
Wang, Xiu [1 ]
Yu, Jinghua [1 ]
Song, Xianrang [2 ]
机构
[1] Univ Jinan, Sch Chem & Chem Engn, Shandong Univ, Key Lab Chem Sensing & Anal, Jinan 250022, Peoples R China
[2] Shandong Tumor Hosp, Canc Res Ctr, Jinan 250012, Peoples R China
关键词
Graphene quantum dots; Electrochemiluminescence immunosensor; gold silver nanocomposite-functionalized grapheme; porous PtPd nanochains; ELECTROCHEMICAL IMMUNOSENSOR; ELECTRODE; NANOPARTICLES; NANOMATERIALS; IMMUNOASSAY; BIOMARKER; DEVICE;
D O I
10.1016/j.electacta.2014.01.014
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
In this paper, the electrochemiluminescence (ECL) detection of a tumor marker by using gold-silver nanocomposite-functionalized graphene as a sensing platform, which increased the surface area to capture a large number of primary antibodies as well as improving the electronic transmission rate. The graphene quantum dots (GQDs) were high quantum yield and high biocompatible which obtained by one-pot simple synthetic strategy. With property of good conductivity and large surface area, porous PtPd nanochains can conjugate more GQDs and second antibody to improve the sensitivity of the immunoassay. As a proof-of-concept, carbohydrate antigen 199 was used as a model analyte. Under optimal conditions, the ECL immunosensors exhibited a wide detection range (0.002-70 U.mL(-1)) and a low detection limit (0.96 mU.mL(-1)). Such immunosensor showed good precision, acceptable stability and reproducibility. In addition, the proposed method provided a new promising platform of clinical immunoassay for other biomolecules. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:470 / 476
页数:7
相关论文
共 28 条
[1]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[2]   Nonvolatile Memory Device Using Gold Nanoparticles Covalently Bound to Reduced Graphene Oxide [J].
Cui, Peng ;
Seo, Sohyeon ;
Lee, Junghyun ;
Wang, Luyang ;
Lee, Eunkyo ;
Min, Misook ;
Lee, Hyoyoung .
ACS NANO, 2011, 5 (09) :6826-6833
[3]   Functionalization of Graphene for Efficient Energy Conversion and Storage [J].
Dai, Liming .
ACCOUNTS OF CHEMICAL RESEARCH, 2013, 46 (01) :31-42
[4]  
Dong Y.Q., 2012, CARBON, V50, P4378
[5]   Excitation profile of surface-enhanced Raman scattering in graphene-metal nanoparticle based derivatives [J].
Fu, Xiaoqi ;
Bei, Fengli ;
Wang, Xin ;
O'Brien, Stephen ;
Lombardi, John R. .
NANOSCALE, 2010, 2 (08) :1461-1466
[6]   A disposable immunosensor device for point-of-care test of tumor marker based on copper-mediated amplification [J].
Ge, Shenguang ;
Ge, Lei ;
Yan, Mei ;
Song, Xianrang ;
Yu, Jinghua ;
Liu, Shanshan .
BIOSENSORS & BIOELECTRONICS, 2013, 43 :425-431
[7]   Making Graphene Luminescent by Oxygen Plasma Treatment [J].
Gokus, T. ;
Nair, R. R. ;
Bonetti, A. ;
Boehmler, M. ;
Lombardo, A. ;
Novoselov, K. S. ;
Geim, A. K. ;
Ferrari, A. C. ;
Hartschuh, A. .
ACS NANO, 2009, 3 (12) :3963-3968
[8]   Synthesis and electrochemical applications of gold nanoparticles [J].
Guo, Shaojun ;
Wang, Erkang .
ANALYTICA CHIMICA ACTA, 2007, 598 (02) :181-192
[9]   Graphene edges: a review of their fabrication and characterization [J].
Jia, Xiaoting ;
Campos-Delgado, Jessica ;
Terrones, Mauricio ;
Meunier, Vincent ;
Dresselhaus, Mildred S. .
NANOSCALE, 2011, 3 (01) :86-95
[10]   Electrochemical immunosensor with N-doped graphene-modified electrode for label-free detection of the breast cancer biomarker CA 15-3 [J].
Li, He ;
He, Jing ;
Li, Songjun ;
Turner, Anthony P. F. .
BIOSENSORS & BIOELECTRONICS, 2013, 43 :25-29