Boundedness and compactness of a supremum-involving integral operator

被引:6
作者
Prokhorov, D. V. [1 ]
机构
[1] Russian Acad Sci, Far Eastern Branch, Ctr Comp, Khabarovsk 680000, Russia
关键词
WEIGHTED NORM INEQUALITIES; HARDY-TYPE;
D O I
10.1134/S0081543813080105
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain criteria of boundedness and compactness of a supremum-involving integral operator in Lebesgue spaces on a half-axis.
引用
收藏
页码:136 / 148
页数:13
相关论文
共 12 条
[1]   WEIGHTED NORM INEQUALITIES FOR OPERATORS OF HARDY TYPE [J].
BLOOM, S ;
KERMAN, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 113 (01) :135-141
[2]   A reduction theorem for supremum operators [J].
Gogatishvili, Amiran ;
Pick, Lubos .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 208 (01) :270-279
[3]  
Gogatishvili A, 2006, COLLECT MATH, V57, P227
[4]  
OINAROV R., 1994, P STEKLOV I MATH+, P205
[5]  
Oinarov R., 1992, DOKL MATH, V44, P291
[6]  
Pernecka E., 2013, B UNIONE MAT ITAL 9, V6, P219
[7]  
Persson L.E., 2003, WEIGHTED INEQUALITIE
[8]   On Supremum Operators [J].
Prokhorov, D. V. ;
Stepanov, V. D. .
DOKLADY MATHEMATICS, 2011, 84 (01) :457-458
[9]   LORENTZ NORM INEQUALITIES FOR THE HARDY OPERATOR INVOLVING SUPREMA [J].
Prokhorov, Dmitry V. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (05) :1585-1592
[10]   Inequalities for Riemann-Liouville operator involving suprema [J].
Prokhorov, Dmitry V. .
COLLECTANEA MATHEMATICA, 2010, 61 (03) :263-276