Non-Abelian gauge theories, prepotentials, and Abelian differentials

被引:1
作者
Marshakov, A. V. [1 ,2 ]
机构
[1] RAS, PN Lebedev Phys Inst, Tamm Dept Theoret Phys, Moscow 117901, Russia
[2] Inst Theoret & Expt Phys, Moscow 117259, Russia
基金
俄罗斯基础研究基金会;
关键词
supersymmetric gauge theory; topological string; integrable system; SEIBERG-WITTEN THEORY; TOPOLOGICAL STRINGS; MATRIX MODELS; EQUATIONS; FIELD;
D O I
10.1007/s11232-009-0049-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss particular solutions of integrable systems (starting from the well-known dispersionless KdV and Toda hierarchies) that most directly define the generating functions for the Gromov-Witten classes in terms of a rational complex curve. From the mirror theory standpoint, these generating functions can be identified with the simplest prepotentials of complex manifolds, and we present some new exactly calculable examples of such prepotentials. For higher-genus curves, which in this context correspond to non-Abelian gauge theories via the topological string/gauge duality, we construct similar solutions using an extended basis of Abelian differentials, generally with extra singularities at the branch points of the curve.
引用
收藏
页码:598 / 617
页数:20
相关论文
共 60 条
[1]  
AGANAGIC M, 2006, ARXIVHEPTH0607100V2
[2]   Topological strings and (almost) modular forms [J].
Aganagic, Mina ;
Bouchard, Vincent ;
Klemm, Albrecht .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 277 (03) :771-819
[3]   HOLOMORPHIC ANOMALIES IN TOPOLOGICAL FIELD-THEORIES [J].
BERSHADSKY, M ;
CECOTTI, S ;
OOGURI, H ;
VAFA, C .
NUCLEAR PHYSICS B, 1993, 405 (2-3) :279-304
[4]   KODAIRA-SPENCER THEORY OF GRAVITY AND EXACT RESULTS FOR QUANTUM STRING AMPLITUDES [J].
BERSHADSKY, M ;
CECOTTI, S ;
OOGURI, H ;
VAFA, C .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 165 (02) :311-427
[5]  
BERSHADSKY M, 1993, ARXIVHEPTH9309140V1
[6]  
BERSHADSKY M, 1993, ARXIVHEPTH9302103V1
[7]   WDVV equations for 6d Seiberg-Witten theory and bi-elliptic curves [J].
Braden, H. W. ;
Marshakov, A. ;
Mironov, A. ;
Morozov, A. .
ACTA APPLICANDAE MATHEMATICAE, 2007, 99 (03) :223-244
[8]  
Braden H. W., 2006, ARXIVHEPTH0606035V3
[9]  
CARLET G, 2003, ARXIVNLINSI0306060V2
[10]   THE EXTENDED TODA HIERARCHY [J].
Carlet, Guido ;
Dubrovin, Boris ;
Zhang, Youjin .
MOSCOW MATHEMATICAL JOURNAL, 2004, 4 (02) :313-332