Electrodynamic-tether fault measurement using time-domain reflectometry

被引:0
|
作者
Bilén, SG [1 ]
机构
[1] Penn State Univ, University Pk, PA 16802 USA
关键词
D O I
暂无
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The use of time-domain reflectometry (TDR) has been proposed to determine fault position and/or density along electrodynamic tether (EDT) systems. Future EDT missions are desired to be long duration (from several months to years); hence, these missions can expect possibly significant performance degradation due to breaches in tether insulating material caused by hazards such as micrometeoroids. A TDR system provides one possible method for measuring EDT fault build-up as a function of time, allowing researchers to understand and model the degradation characteristics and to design EDT systems to survive expected levels, In addition, including a TDR system as part of long-duration EDT missions would facilitate real-time tracking of the expected performance degradation and health state of the tether. The TDR technique has long been an effective tool for deter-mining the location of loads and faults along common transmission lines (TLs) such as coaxial cables. Also sometimes known as pulse reflectometry, TDR works by sending an impulse down a TL and recording the reflected energy as a function of time. Measurement of the reflected TDR waveform provides insight into the physical structure of the TL and any loads, i.e., faults, along its length. In addition, the delay between launched and reflected signals determines the location of the load or fault.
引用
收藏
页码:401 / 405
页数:5
相关论文
共 50 条
  • [41] Applications of terahertz time-domain reflectometry
    Kitahara, Hideaki
    Takano, Keisuke
    Ikeda, Takeshi
    Tani, Masahiko
    Hangyo, Masanori
    IEEJ Transactions on Fundamentals and Materials, 2007, 127 (07) : 391 - 396
  • [42] THE SPATIAL SENSITIVITY OF TIME-DOMAIN REFLECTOMETRY
    BAKER, JM
    LASCANO, RJ
    SOIL SCIENCE, 1989, 147 (05) : 378 - 384
  • [43] ENERGY BOUNDS FOR TIME-DOMAIN REFLECTOMETRY
    ROEMER, LE
    MAYHAN, JT
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 1973, IM22 (03) : 258 - 261
  • [44] THE SPATIAL SENSITIVITY OF TIME-DOMAIN REFLECTOMETRY
    KNIGHT, JH
    SOIL SCIENCE, 1991, 151 (03) : 254 - 255
  • [45] TIME-DOMAIN REFLECTOMETRY IN CARBOHYDRATE SOLUTIONS
    VANLOON, WKP
    SMULDERS, PEA
    VANDENBERG, C
    VANHANEGHEM, IA
    JOURNAL OF FOOD ENGINEERING, 1995, 26 (03) : 319 - 328
  • [46] Computational optical time-domain reflectometry
    Cao, Zhi-Han
    Shu, Dayong
    Zhou, Da-Peng
    Peng, Wei
    OPTICS AND LASER TECHNOLOGY, 2025, 181
  • [47] Water salinity measurement using a long-period grating and optical time-domain reflectometry
    Juca, Marco Aurelio
    Pereira, Isabela Victoria C.
    Spelta, Pedro C. G.
    dos Santos, Alexandre Bessa
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2023, 40 (04) : C8 - C14
  • [48] Performance improvements of wire fault diagnosis approach based on time-domain reflectometry
    de Paulis, Francesco
    Boudjefdjouf, Hamza
    Bouchekara, Houssem R. E. H.
    Orlandi, Antonio
    Smail, Mostafa Kamel
    IET SCIENCE MEASUREMENT & TECHNOLOGY, 2017, 11 (05) : 538 - 544
  • [49] WATER-CONTENT MEASUREMENT IN FOREST SOILS AND DECAYED WOOD USING TIME-DOMAIN REFLECTOMETRY
    GRAY, AN
    SPIES, TA
    CANADIAN JOURNAL OF FOREST RESEARCH-REVUE CANADIENNE DE RECHERCHE FORESTIERE, 1995, 25 (03): : 376 - 385
  • [50] A TIME-DOMAIN REFLECTOMETRY USING ENVELOPE EXTRACTION AND ITS APPLICATION TO MEASUREMENT OF STRIPLINE RESONATOR CHARACTERISTICS
    OMORI, T
    YASHIRO, K
    OHKAWA, S
    IEICE TRANSACTIONS ON ELECTRONICS, 1994, E77C (06) : 908 - 912