An empirical Bayes approach to identification of modules in dynamic networks

被引:32
作者
Everitt, Niklas [1 ]
Bottegal, Giulio [2 ]
Hjalmarsson, Hakan [1 ]
机构
[1] KTH Royal Inst Technol, Sch Elect Engn, ACCESS Linneaus Ctr, Stockholm, Sweden
[2] Eindhoven Univ Technol, Dept Elect Engn, Eindhoven, Netherlands
基金
欧洲研究理事会; 瑞典研究理事会;
关键词
System identification; Dynamic network; Empirical Bayes; Expectation-maximization; SYSTEM-IDENTIFICATION; MAXIMUM-LIKELIHOOD; COMPLEX; MODELS;
D O I
10.1016/j.automatica.2018.01.011
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present a new method of identifying a specific module in a dynamic network, possibly with feedback loops. Assuming known topology, we express the dynamics by an acyclic network composed of two blocks where the first block accounts for the relation between the known reference signals and the input to the target module, while the second block contains the target module. Using an empirical Bayes approach, we model the first block as a Gaussian vector with covariance matrix (kernel) given by the recently introduced stable spline kernel. The parameters of the target module are estimated by solving a marginal likelihood problem with a novel iterative scheme based on the Expectation-Maximization algorithm. Additionally, we extend the method to include additional measurements downstream of the target module. Using Markov Chain Monte Carlo techniques, it is shown that the same iterative scheme can solve also this formulation. Numerical experiments illustrate the effectiveness of the proposed methods. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:144 / 151
页数:8
相关论文
共 29 条
[1]  
ANDERSON B. D., 2012, Optimal Filtering
[2]  
[Anonymous], 2009, MARKOV CHAINS STOCHA
[3]  
[Anonymous], 1999, System Identification: Theory for the User
[4]   Julia: A Fresh Approach to Numerical Computing [J].
Bezanson, Jeff ;
Edelman, Alan ;
Karpinski, Stefan ;
Shah, Viral B. .
SIAM REVIEW, 2017, 59 (01) :65-98
[5]   Robust EM kernel-based methods for linear system identification [J].
Bottegal, Giulio ;
Aravkin, Aleksandr Y. ;
Hjalmarsson, Hakan ;
Pillonetto, Gianluigi .
AUTOMATICA, 2016, 67 :114-126
[6]   A Bayesian approach to sparse dynamic network identification [J].
Chiuso, Alessandro ;
Pillonetto, Gianluigi .
AUTOMATICA, 2012, 48 (08) :1553-1565
[7]  
Dankers A, 2015, IEEE DECIS CONTR P, P3487, DOI 10.1109/CDC.2015.7402759
[8]   Errors-in-variables identification in dynamic networks - Consistency results for an instrumental variable approach [J].
Dankers, Arne ;
Van den Hof, Paul M. J. ;
Bombois, Xavier ;
Heuberger, Peter S. C. .
AUTOMATICA, 2015, 62 :39-50
[9]  
Dankers AG, 2013, IEEE DECIS CONTR P, P4541, DOI 10.1109/CDC.2013.6760589
[10]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38